
Laboratory experiment

Study of laws of collision on an

air-cushion track

1.1 Task

The aim of this experiment is to study elastic and inelastic collisions of bodies moving without
friction on a horizontal air-cushion track. For different mass ratios of the bodies (gliders), determine
their kinetic energies and momenta before and after the collision.

1.2 Theory

1.2.1 Collisions of bodies

Under the influence of the applied forces, bodies move smoothly in accordance with the laws of
motion. If two or more bodies interfere with each other in their motion, they collide, i.e., the
magnitudes and directions of motion of these bodies change rapidly.

The concept of collision is very general. For example, we can talk about collision of cars,
galaxies, elementary particles, and it is clear that the processes and mechanisms of these collisions
are quite different and different processes are involved.

The collision of rigid and elastic bodies is also called the impact of bodies. During a very short
impact, tremendous impact forces are generated at the point of contact of the bodies, which cause
an abrupt change in their motion, can cause their deformation or even breaking. Because of the
large magnitudes of the impact forces, we can usually neglect the action of other forces during the
impact.

If the law of conservation of kinetic energy applies in the collision of bodies, we speak of an
elastic (perfectly elastic) collision, if not, we speak of an inelastic collision. If after the collision
there is no rebound of the bodies and they remain connected, we speak of a perfectly inelastic
collision.

1.2.2 Conservation laws

If we do not know the exact mechanism of the collision of bodies (their mutual force interaction),
we cannot predict their outcome unambiguously. It depends on the shape of the bodies, their
elasticity, surface roughness, etc. The mutual forces that the bodies exert on each other during a
collision are internal forces, forces of action and reaction. Since the action of external forces can
be neglected during the collision, the colliding bodies form an isolated reference frame and the law
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of conservation of momentum applies to them. Thus, even without knowing anything more about
the collision mechanism, for the collision of two bodies, we can write the law of conservation of
momentum

m1v1 +m2v2 = m1v
′

1 +m2v
′

2, (1.1)

thus the total momentum of the two bodies before the collision is equal to their total momentum
after the collision. Here mi are the masses of the bodies, vi are their velocities before the collision,
and v

′

i are their velocities after the collision (i = 1, 2).
In addition, in an elastic collision, the law of conservation of kinetic energy also applies, which

has the form
1

2
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2
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2
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′2
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2
m2v

′2
2 , (1.2)

thus the total kinetic energy of the bodies before the collision is equal to the total kinetic energy
of the bodies after the collision. Here v2i = vi · vi is the square of the magnitude of the velocity of
the bodies.

Equations (1.1) and (1.2) form a set of four equations for six unknown components of vectors
v
′

1,v
′

2 after the collision and thus they do not describe the general elastic collision uniquely. Even
in the case of the plane problem, the number of equations is not sufficient. Only in the case of
a one-dimensional (linear) problem (the velocities before and after the collision lie on the same
straight line–we speak of a linear collision) we have two equations for two unknowns, and thus we
can describe the elastic collision uniquely, regardless of the collision mechanism.

In the following, we will discuss the perfectly elastic and perfectly inelastic linear collision of
two bodies, where one of them (the target body) will always be at rest before the collision.

1.2.3 Linear elastic collision

The laws of conservation of momentum and energy in this particular case have the form

m1v1 +m2v2 = m1v
′

1 +m2v
′

2, (1.3a)
1

2
m1v

2
1 +

1

2
m2v

2
2 =

1

2
m1v

′2
1 +

1

2
m2v

′2
2 , (1.3b)

where v1, v2, v
′

1, and v′2 are the oriented velocity magnitudes, i.e., the respective components of the
velocity vectors in the direction of the line along which the impact takes place. Since we consider
the second body prior to the collision at rest, we can write v2 = 0, v1 = v and introduce the
quantity µ = m1/m2. The equations (1.3) then take the form

µv = µv′1 + v′2, (1.4a)

µv2 = µv′21 + v′22 (1.4b)

From Eq. (1.4a) we can isolate the velocity v′2 = µ(v− v′1) and after substitution into Eq. (1.4b)
we obtain

µ(v2 − v′21 ) = µ2(v − v′1)
2 ⇒ µ(v − v′1)(v + v′1) = µ2(v − v′1)(v − v′1). (1.5)

One of the solutions of Eq. (1.5) is v′1 = v, after substituting it into Eq. (1.4a) we get v′2 = 0,
where we see that this solution describes the situation before the collision, for this reason it is not
interesting for us and we will not deal with it further. After dividing Eq. (1.5) by µ(v− v′1) 6= 0 we
get

v′1 =
µ− 1

µ+ 1
v (1.6)
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and after substitution into Eq. (1.4a)

v′2 =
2µ

µ+ 1
v (1.7)

Depending on the value of the ratio µ = m1/m2, from Eqs. (1.6) and (1.7) these conclusions
follow:

• If µ > 1, (m1 > m2), then it holds1: sign( v′1) = sign( v′2) = sign( v), so both bodies after
the collision will move in the same direction as the first body before the collision. If µ ≫

1, (m1 ≫ m2), after the collision v′1 ≈ v (the first body will continue with the same velocity),
and v′2 ≈ 2v (the second body will be accelerated to twice the velocity of the first one).

• If µ = 1, (m1 = m2), then it holds: v′1 = 0, v′2 = v, i.e., after the collision the first body
will stop and the second body will move with the same velocity as the first body before the
collision (the bodies will exchange their momentum).

• If µ < 1, (m1 < m2), then it holds: −sign( v′1) = sign( v′2) = sign( v), i.e., the first body after
the collision will change its direction (it bounces back), the second body after the collision
will move in the same direction as the first body before the collision. If µ ≈ 0, (m1 ≪ m2),
then v′1 ≈ −v, v2 ≈ 0, i.e., the first body will bounce back with the same velocity and the
second body will remain at rest.

For the momenta of the bodies after the collision, from Eqs. (1.6) and (1.7) we obtain

p′1 =
µ− 1

µ+ 1
p, p′2 =

2

µ+ 1
p, (1.8)

for the kinetic energies it holds

T ′

1 =

(

µ− 1

µ+ 1

)2

T, T ′

2 =
4µ

(µ+ 1)2
T. (1.9)

Of course, it also holds p′1 + p′2 = p and T ′

1 + T ′

2 = T .
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Figure 1.1: Normalized momenta and kinetic energies of individual bodies after elastic collision for
different values of the parameter µ.

1The function sign() is defined as follows: sign(x) ≡ 1 for x ≥ 0, sign(x) ≡ −1 for x < 0.
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Next, we can find out under what conditions (for what ratio of masses for a given T ) the first
body will transfer the greatest amount of energy to the second one by elastic collision. Taking the
derivative of the coefficient in the right equation of Eqs. (1.9) gives2

d

dµ

[

4µ

(µ+ 1)2

]

= −
4(µ− 1)

(µ+ 1)3
!
= 0 ⇒ µ = 1. (1.10)

So the second body gets the maximum kinetic energy if the masses of both the bodies are equal
(m1 = m2), and it holds T ′

2 = T , T ′

1 = 0.

1.2.4 Linear perfectly inelastic collision

Next, we will consider the case where the bodies collide inelastically in such a way that they stick
together and thus v′1 = v′2 = v′. In this case, we cannot use the law of conservation of kinetic energy
to describe the collision, since part of the energy is dissipated in plastic deformation and possibly
heating of the bodies. However, the law of conservation of momentum is valid and we can write
(again assuming that the second body is at rest before the collision, so v2 = 0, and again denoting
v1 = v)

m1v1 +m2v2 = m1v
′

1 +m2v
′

2 ⇒ m1v = (m1 +m2)v
′ ⇒ v′ =

µ

µ+ 1
v. (1.11)

For the momentum of the (joined) bodies after the collision we get

p′1 =
µ

µ+ 1
p, p′2 =

1

µ+ 1
p, (1.12)

and again, it holds that p′1 + p′2 = p. For the kinetic energy of the bodies after the collision it holds

T ′

1 =

(

µ

µ+ 1

)2

T, T ′

2 =
µ

(µ+ 1)2
T. (1.13)

In an inelastic collision, part of the kinetic energy is dissipated in plastic deformation, so T ′

1+T ′

2 6= T .
We can calculate the magnitude of this energy (deformation work) as

∆T = T − (T ′

1 + T ′

2) =
1

µ+ 1
T. (1.14)

From here, it can be seen that:

• If m1 ≫ m2 (µ ≫ 1), then ∆T ≈ 0, i.e., only a minimum of kinetic energy is dissipated in
the inelastic collision.

• If m1 = m2 (µ = 1), then ∆T = T/2, and thus a half of the kinetic energy is dissipated in
the inelastic collision.

• If m1 ≪ m2 (µ ≈ 0), then ∆T ≈ T , i.e., almost all the kinetic energy is dissipated in the
inelastic collision.

2For µ < 1 the derivative is positive, the function is then increasing; for µ > 1 the derivative is negative, the
function is decreasing. From here, it follows that this extreme represents the maximum.
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Figure 1.2: Normalized momenta and kinetic energies of individual bodies after perfectly inelastic
collision for different values of the parameter µ.

1.3 Experiment

Figure 1.3: Air-cushion track for the study of collision
of bodies.

The aim of this experiment is to verify
the validity of the relations for the redis-
tribution of the momentum and kinetic
energy of bodies in relation to the ratio of
their masses µ = m1/m2 in a linear elas-
tic collision and a linear perfectly inelas-
tic collision [relations (1.8), (1.9), (1.12),
and (1.13)].

The above formulas were derived un-
der the assumption that during a very
short collision we can neglect all exter-
nal forces and consider the colliding bod-
ies an isolated reference frame. In order
to be able to measure the velocities of
the bodies before and after the collision,
the experiment is placed on a horizontal
air-cushion track, see Fig 1.3. The air-
cushion track is placed horizontally, so

that the gravitational force does not act in the direction of motion of the bodies (gliders). They
move almost without friction on the air cushion, so their motion before and after collision is uniform
(they move at constant velocities).

1.3.1 Connecting and setting-up the experiment

Check that the starter system at the end of the air-cushion track is turned with the movable end
towards the track. If not, loosen the clamping screws and rotate it.

Connect the starter system to the timer terminals, see Fig. 1.4, marked START, with the red
terminal on the starter system to the yellow terminal on the timer. Connect the light barriers to the
timer terminals 1 and 3 so that the corresponding colours match each other. Connect the barrier
closer to the starter to the terminals 1. Switch the timer mode rotary switch to the position 3, see
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Fig. 1.4.

Figure 1.4: Timer.

Switch both slide switches to the
rightmost position. In this mode and
wiring, the first display shows the dura-
tion of the first shading of the first light
barrier and the second display the du-
ration of the second shading of the first
light barrier. The third and fourth dis-
plays function similarly for the second
light barrier. The measured times are re-
set by pressing the RESET button.

Switch on the blower and set the de-
sired airflow3 (e.g. position 3-4). Check
that the air track is horizontal (gliders do
not move on it spontaneously when set at
rest), if not, adjust it to the best possible horizontal position using the appropriate screws. Position
the light barriers so that they measure the time before and after the collision when they are shaded
by the freely moving gliders.

1.3.2 Procedure

Elastic collisions

1. Connect and set up the experiment according to the procedure described in the previous
paragraph.

2. Attach the fork with a rubber band to one of the gliders and the plate with plug to the other
to provide an elastic collision. Attach the l = 10 cm screens to both the gliders. On the glider
that will be the launcher, place symmetrically two weights with masses 50 g.

3. Use the portable balance to measure the masses of the gliders (m1 and m2).

4. Check whether the gliders can move freely on the track. Set the starter device’s launcher to
the middle latch position, use the magnet to attach the accelerated glider to it. Place the
second glider between the light barriers and bring it to rest.

5. Press the RESET button to reset the timer and launch the glider. Calculate the speeds of
each glider as vi = l/∆ti, where ∆ti are the shading durations of the individual light barriers
(shown on the individual displays) and l is the length of the screens on the gliders. Conduct
the measurements at least 5×.

6. Add symmetrically two 10 g weights to the target glider and continue the measurement with
point 4.

7. Plot a graph showing the theoretical momentum dependences [relations (1.8)] and their sum,
together with the measured values, as a function of the mass ratio µ.

8. Plot a graph showing the theoretical kinetic energy dependences [relations (1.9)) ] and their
sum, together with the measured values, as a function of the mass ratio µ.

3If the airflow is too low, the gliders would not move on the air cushion.
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Perfectly inelastic collisions

The measurement is carried out in the same way as in the case of elastic collisions, only the fork
with the rubber band and the plug with plate are replaced by the plug with needle and the plug with
tube filled with wax ensuring the connection of the two gliders after the collision. With prolonged
use, the needle will puncture the wax filling (you will hear the impact when the collision occurs).
In this case, just push the wax filling into the tube.

• Plot a graph showing the theoretical momentum dependences [relations (1.12)] and their sum
together with the measured values as a function of the mass ratio µ.

• Plot a graph showing the theoretical kinetic energies [relations (1.13)], their sum, and defor-
mation work [relation (1.14)], together with the measured values, as a function of the mass
ratio µ.

1.4 References

More on collisions can be found e.g. in textbook:
Jǐŕı Bajer: Mechanika 2, Univerzita Palackého v Olomouci, Olomouc, 2004.
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