
Laboratory experiment

Study of free fall and measurement
of the free-fall acceleration

1.1 Tasks

1. Measure the dependence of free-fall time on height for two steel balls of different diameters.

2. For both the balls, plot a graph of the height versus the time of free-fall, calculate the free-fall
acceleration and its uncertainty and compare the results with the local value for Prague.

1.2 Theory

1.2.1 Newton’s law of gravitation
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Figure 1.1: Regarding Newton’s law
of gravitation.

According to Newton’s law of gravitation, the magnitude of
the gravitational force exerted on two mass particles is di-
rectly proportional to the product of their masses and in-
versely proportional to the square of their distance. Using
the formula, we can write

FG = G
mM

r2
, (1.1)

where m, M are masses of the individual particles, r is their
mutual distance, and G is the so-called gravitational con-
stant, whose value

G = (6.674 08± 0.000 31) · 10−11 m3 · kg−1 · s−2,

is determined experimentally.
The gravitational force is attractive one, if we introduce the gravitational force vector FG,

describing the force exerted by the particle M on a particle m, Eq. (1.1) can be rewritten as

FG = −G
mM

r2
r0 = −G

mM

r3
r, (1.2)

where r is the position vector from the mass particle M towards the mass particle m, and r0 = r/r
is corresponding unit vector. According to Newton’s third law it applies for the force F′

G, exerted
by the mass particle m on the mass particle M that F′

G = −FG.
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Equation (1.2) holds true exactly for mass particles. For extended bodies, the appropriate re-
lation must be found by decomposing the volumes of the bodies into infinitesimal elements and
“summing” the elementary contributions using the integral. It can be shown (laboriously but
straightforwardly) that the relation (1.2) holds exactly only for spheres of masses M and m with
spherically-symmetrically distributed mass, the position vector r being then defined by the geo-
metric centers of the spheres. The relation (1.2) also holds for the force acting between a sphere
and a mass particle.

1.2.2 Earth’s gravitational field

In this paragraph we examine the motion of a body in the Earth’s gravitational field, and for the
sake of illustration we shall do so in several approximations.

Earth as a non-rotating sphere

Assume first that the Earth is a sphere of radius RE, mass M = ME, with spherically symmetrically
distributed mass, and assume first that it does not rotate along its axis. We will further assume
that a body of mass m, whose motion we will investigate, is small enough relative to the Earth to
be considered a mass particle, and that m ≪ ME holds. Neglecting the effect of the atmosphere1,
the only one force acting on the freely moving body will be the gravitational force FG described by
Eq. (1.2).

The motion of the body can be calculated by substituting the gravitational force into Newton’s
second law, thus obtaining the equation of motion

ma = FG ⇒ m
d2r

dt2
= −G

mME

r3
r ⇒

d2r

dt2
+G

ME

r3
r = 0, (1.3)

for the solution of which we need to know the initial conditions (for the position vector and its
derivative – the velocity vector) at some time t0. From the equation (1.3) it is immediately seen
that the motion of a body moving freely in a gravitational field does not depend on its mass m.

The exact analytical solution of Eq. (1.3) is known2; however, it is too much complicated for
the solution of many practical problems.

The complicatedness of solving Eq. (1.3) is caused by the nonlinear form of the functional
dependence of the gravitational force Eq. (1.2) – its magnitude is not a constant (it decreases with
the square of the distance r) and also its orientation changes from point to point (it is oriented
towards the center of the sphere).

The situation is greatly simplified if we restrict ourselves to describing motion in a limited space
near the Earth’s surface. If we introduce local Cartesian coordinates at a given point on the Earth
such that the positive direction of the z-axis points in the direction of the unit vector r0 and the
z-axis is zero at the surface of the Earth, we can write for the z-component of the gravitational
force vector that

FGz = −G
mME

(RE + z)2
. (1.4)

This formula describes the decrease of the gravitational force with the distance z from the Earth’s
surface. For small distances z the formula (1.4) can be approximated employing the Taylor series

1The atmosphere manifests itself in two ways; on the one hand, it lifts the body by buoyancy and on the other
hand, it hinders its motion by the action of the drag force.

2This is the so-called Kepler problem, the solution of which implies that bodies in the central force-field move
along conic trajectories.
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Figure 1.2: Approximation of the central field by a uniform field.

at point z = 0 as

FGz = −
GmME

R2
E

[

1− 2
z

RE

+ 3

(

z

RE

)2

− . . .

]

. (1.5)

If we restrict ourselves to small heights z (compared to the radius of the Earth), we can neglect
the terms in square brackets compared to one and write

FGz ≈ −mag, where ag ≡
GME

R2
E

, (1.6)

where ag is the magnitude of the free-fall acceleration (acceleration due to gravity) at the Earth’s
surface. If we substituteME = 5.972 19×1024 kg and the Earth’s equatorial radiusRE = 6378.14 km,
we get ag = 9.7980m·s−2.

The difference between Eqs. (1.5) and (1.6) increases with the increasing height z; retaining the
second term in square brackets in Eq. (1.5) shows that the acceleration due to gravity near the
Earth’s surface decreases by ca. 0.003m·s−2 per every kilometer.

vertical

φ

R

ω

g

ac

ag

Figure 1.3: Free-fall accelera-
tion.

Since the gravitational force is directed to the centre of the
Earth, the verticals (local axes z) at different points on the sur-
face of the Earth have a non-zero angle δ, for which

δ =
s

RE

,

where s is the distance (arc length) between the given points on
the Earth’s surface (approximated as a sphere), see Fig. 1.2. Direct
substitution into this formula shows that the angle between two
verticals is ca. 0.54′ per every kilometer of the distance, in other
words, the nearby verticals are more or less parallel, see Fig. 1.2.

Therefore, using local Cartesian coordinates on the Earth’s sur-
face, we can replace the central gravitational field by a uniform
field and replace the gravitational force (1.2) by (an approximate)
relation

Fg = mag where ag = [0, 0,−ag], (1.7)

where ag is introduced by Eq. (1.6).
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Earth as a rotating sphere

Considering that the Earth rotates along its axis (with period T = 1 sidereal day3), then a reference
frame fixed to the Earth is necessarily non-inertial, and to be able to to apply Newton’s laws, we
have to introduce inertial forces. In this case, we take into account the centrifugal force and the
Coriolis force.

For the magnitude of the centrifugal force acting on a mass particle m in a rotating reference
frame it applies

Fc = mac = mω2R, (1.8)

where ac is the magnitude of the centrifugal acceleration, ω is the magnitude of the rotation angular
frequency, and R is the distance of the mass particle from the rotation axis. The centrifugal force
is directed perpendicularly from the axis of rotation.

The Coriolis force acts only on bodies that are moving relative to the rotating reference frame
and it applies

FC = 2mv× ω, (1.9)

where v is the velocity vector of the body relative to the rotating reference frame and ω is the
angular frequency vector4 of the rotation of the reference frame.

The Coriolis force is a gyroscopic force (it does not change the magnitude of the velocity of
bodies, only their direction), it is quite weak (in the reference frame of rotating Earth) and its
effects will be neglected in this text5.

The total force acting on a freely moving body described from the reference frame rigidly
connected to the rotating Earth is therefore given by the vector sum of FG + Fc.

The problem can be simplified, as in the previous case, if we restrict ourselves to describing mo-
tion in a limited space near the Earth’s surface. The only difference is that the free-fall acceleration
vector g is given by the sum of the gravitational and centrifugal acceleration vectors g = ag + ac,
it does not generally point to the centre of the Earth and its magnitude depends on the latitude
φ (it increases with increasing latitude, with the maximum at the poles, and the minimum at the
equator).

So if the Earth were a sphere of radius RE, at the equator R = RE, and the centrifugal force
would be directed radially from the centre of the Earth in the opposite direction to the force of
gravity. So for the magnitude of the free-fall acceleration at the equator

gequator = ag − ac =
GME

R2
E

−
4π2

T 2
RE = 9.7641m · s−2,

which is by 0.0339m·s−2 less then the value at poles, where it holds R = 0km and the free-fall
acceleration is equal to the acceleration due to gravity (gpole = ag).

In this case we can also introduce local Cartesian coordinates at different locations, but the
local verticals do not have the radial direction (to the centre of the Earth), but a local direction of
the free-fall acceleration (it can be easily determined with a plumb bob). Near the surface of the
Earth in a limited space, we can then again consider the force field as uniform and write for the
total force

Fg = mg where g = [0, 0,−g], (1.10)

3One sidereal day is approximately equal to 23h 56m.
4This vector has the direction of the axis of rotation, its orientation is determined by the right hand rule.
5For example, it can be shown that the Coriolis force deflects a ball released in free fall from the Petř́ın tower

(the Prague Eiffel tower), from a height of 60m, by 6.5mm to the east.
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Earth as a rotating spheroid

The situation is actually a bit more complicated, as the Earth is slightly flattened due to its
rotation at the poles (the Earth’s polar radius is Rp = 6356.75 km) and its shape resembles a
spheroid. Therefore, the magnitude of the acceleration due to gravity at the Earth’s surface is also
a function of latitude. To calculate the magnitude of the free-fall acceleration at the sea level, an
approximate empirical formula can be used6

g = ge(1 + γ2 sin
2 φ+ γ4 sin

4 φ), (1.11)

where ge = 9.780 327m·s−2 is the free-fall acceleration at the equator, φ is the latitude, and γ2 =
0.005 279 2, and γ4 = 0.000 023 2 are correction coefficients. From Eq. (1.11) it follows, that the
free-fall acceleration at the equator gequator ≈ 9.78m·s−2, and at the poles gpoles ≈ 9,83m·s−2. In
Prague (φ = 50◦ 06′) then gPrague ≈ 9.81m·s−2. With altitude, the free-fall acceleration decreases,
as shown above, at a rate of about 0.003m·s−2 per every kilometer.

The field in the limited space near the Earth’s surface can be considered uniform, we can
introduce the force vector in local Cartesian coordinates using the relation (1.10) and use Eq. (1.11)
for the magnitude of the free-fall acceleration.

1.2.3 Motion in the Earth’s gravitational field

It is easy to investigate the motion of a body (mass particle) in the Earth’s gravitational field,
adopting the previous assumptions and simplifications. Neglecting again the air drag, the equation
of motion together with the relation for the gravitational force (1.10) can be written as

m
d2r

dt2
= m

dv

dt
= mg ⇒

dv

dt
= g. (1.12)
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Figure 1.4: Free fall appara-
tus.

As the vector g now (in a limited space) can be considered uni-
form, Eq. (1.12) can be easily integrated

dv = g dt ⇒

∫ v

v0

dv′ =

∫ t

0

g dt′

⇒ v =
dr

dt
= gt+ v0, (1.13)

where v0 is the mass particle velocity at the time t = 0 (the ini-
tial condition). Integrating Eq. (1.13) the time-dependence of the
position vector can be calculated as

dr = (gt+ v0) dt ⇒

∫ r

r0

dr′ =

∫ t

0

(gt′ + v0) dt
′

⇒ r =
1

2
gt2 + v0t+ r0, (1.14)

where r0 is the position vector of the mass particle at time t = 0 (the
initial condition).

6The actual value of the free-fall acceleration differs slightly from this formula at different places on Earth, because
the Earth is not a spheroid and the crust has different densities in different places.
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An example: Vertical projectile motion

A projectile (mass particle) is launched from the position r0 = [0, 0, h] (from the height of h)
vertically with an initial velocity v0 = [0, 0, v0]. As it holds g = [0, 0,−g], substitution into
individual components of Eq. (1.14) results in

x(t) = 0, y(t) = 0, z(t) = −
1

2
gt2 + v0t+ h.

The time of free fall τ can be calculated by substituting z = 0 and solving the quadratic equation

h =
1

2
gτ 2 − v0τ. (1.15)

1.3 Experiment
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4

Figure 1.5: Timer / counter.

The experiment works as follows. A steel ball is dropped from different heights hi and the
corresponding fall times τi are measured. A simple device called the free fall apparatus is used
for the measurement, see Fig. 1.4. A steel ball 1 is held in the top of the apparatus by a small

neodymium magnet. When the trigger 2 is pressed, the ball is released and falls onto the impact

detector 3 . Information about the ball’s release and impact is transmitted to the timer via the

connecting cords 4 and 5 . The ball holder is moved up and down on a centimeter-divided rod

6 , and a screw 7 is used to release and fix the holder.

The timer/counter for measuring the ball drop time is shown in Fig. 1.5. The rotary switch 1
selects the instrument mode, the ball drop time is measured in the position ∆tAB, the instrument
allows to measure with a resolution of 0.1 s, 1ms and 0.1ms. Pressing the RESET 2 button

resets the display, the ball release contact is connected to the IN START/COUNT 3 terminal,

the ball impact sensor to the IN STOP 4 terminal (the terminal colours must be respected). The
device is switched on and off by a switch on the power cord.

1.4 Processing the measured data

For a sphere of a given diameter, the respective fall times τi are measured for different heights hi.
The measured pairs of values (τi, hi) are approximated with a second degree polynomial employing
the least squares method7

h = a2τ
2 + a1τ + a0. (1.16)

7For this purpose you can use the Universal tool for plotting graphs available at website
http://planck.fel.cvut.cz/praktikum/.
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Comparing Eqs. (1.15) and (1.16) shows that the free-fall acceleration corresponds to the coefficient
multiplying the quadratic term and it holds

g = 2a2, σg = 2σa2 .

The coefficient a1 corresponds to the initial speed of the ball, and according to the free-fall appa-
ratus’ release mechanism design, its value should be close to zero.

The coefficient a0 corresponds to the difference between the actual drop height of the ball and
the value set on the bar with centimeter division. Since the drop height of the ball for a given line
on the rod depends on the diameter of the ball, it is difficult to set the actual drop height on the
rod. However, thanks to least squares processing, it is possible to proceed by setting the bottom
edge of the ball holder ( 8 , see Fig. 1.4) to the individual division lines of the rod. This does
introduce a systematic error in the setting of the drop height, but this is not reflected in the result
(the magnitude of the measured free-fall acceleration), but only in the value of the coefficient a0.

1.5 Procedure

1. Choose one steel ball, measure its diameter and weight.

2. Using the free fall apparatus described in Sec. 1.3 measure the free-fall times τi for several
(at least 10) heights hi.

3. Using the procedure described in Sec. 1.4, calculate the magnitude of the free-fall acceleration
and its uncertainty; compare the measured value with the local value for Prague.

4. Plot a graph of the dependence of the height of the fall on the time of the fall (approximate
the measured values with the second-degree polynomial from which you have determined the
free-fall acceleration).

5. Repeat the points 1–4 with a steel ball of different radius.
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1.7 Appendix – Influence of the atmosphere

1.7.1 Buoyancy

In fluids, including the atmosphere – air – there is a buoyant force acting on bodies. It is equal
to the weight of the fluid displaced by the volume of the body; according to Archimedes’ law, it
acts against the gravitational force, and for the sum of the forces acting on a body that is at rest
relative to the fluid it applies

F′

g = Fg + Fb = mg− ρ0V g = (ρ− ρ0)V g, (1.17)
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where ρ0 is the mass density of the fluid (atmosphere), ρ is the average density of the body, and V
is its volume.

1.7.2 Drag

When a body moves in a fluid, a resistive force – drag – acts on it, which is a manifestation of the
fluid’s viscosity. In general, this force is a complex function of the velocity, shape and size of the
body and the viscosity of the fluid. To calculate the magnitude of the drag force, we can use the
approximate empirical Newton’s formula

Fd ≈
1

2
Cρ0Sv

2, (1.18)

where C is a coefficient related to the shape of the body (for a sphere moving with a “higher speed”,
it holds8 C ≈ 0, 5), ρ0 is the fluid density, S is the section area of the body, and v is the speed of
the body with respect to the fluid.

We now investigate, as in paragraph 1.2.3, the free fall from a height h considering the atmo-
spheric drag described by Eq. (1.18). For simplicity, we will assume zero initial velocity. For the
z-component of the velocity vector, the following holds

m
dvz
dt

= −mg +
1

2
Cρ0Sv

2
z . (1.19)

The term describing the drag force has the positive sign because the body moving in free fall moves
in the negative direction of the z axis and the drag force has the opposite direction to the velocity
vector, i.e., positive. Subsequently we get

dvz
dt

= −g +
Cρ0S

2m
v2z ⇒

dvz

−g + Cρ0S

2m
v2z

= dt ⇒

∫ vz

0

dv′z
−g + Cρ0S

2m
v′2z

=

∫ t

0

dt′ ⇒

−

√

2m

Cρ0gS
atanh

(
√

Cρ0S

2mg
vz

)

= t ⇒ vz = −

√

2mg

Cρ0S
tanh

(

√

Cρ0gS

2m
t

)

. (1.20)

The result (1.20) with respect to the properties of the hyperbolic tangent function shows that the
magnitude of the velocity vz increases from zero to the limiting value

|vz|max =

√

2mg

Cρ0S
.

If we employ the Taylor series approximation of the hyperbolic tangent function

tanh x = x−
1

3
x3 +

2

15
x5 − . . . ,

we get

vz = −gt+
Cρ0Sg

2

6m
t3 − . . . . (1.21)

from which it can be seen that the body initially, as long as the magnitude of the drag force is
small, moves with the constant acceleration g.

8The value of C for a given body shapes depends on the Reynolds number.
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Integration of Eqs. (1.21) and (1.20) results in

z(t) = h−
1

2
gt2 +

Cρ0Sg
2

24m
t4 − · · · = h−

2m

Cρ0S
ln

[

cosh

(

√

Cρ0gS

2m
t

)]

. (1.22)
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