
Laboratory experiment

Newton’s second law of motion

1.1 Task

The aim of this experiment is to “check the validity” of Newton’s second law of motion the following
way:

1. Verify that the magnitude of the acceleration of a body is inversely proportional to its mass.

2. Verify that the magnitude of the acceleration of a body is directly proportional to the mag-
nitude of the force acting on it.

1.2 Theory

1.2.1 Newton’s laws of motion

The basic laws of dynamics, i.e., the laws describing the relationships between the forces acting on
bodies and their motion, are the so-called Newton’s laws of motion.

Newton’s first law – the law of inertia

An object at rest remains at rest, and an object that is moving will continue to move straight and
with constant velocity, if and only if there is no net force acting on that object.
In other words, if there are no forces F acting on the body (such a body is usually called free), the
magnitude and direction of its velocity v are constant

F = 0 ⇒ v = const.

Using this law we can define the inertial reference frame: There is a reference frame in which a free
body moves without changing its velocity. Such a reference frame is called inertial reference frame.

Newton’s second law – the law of force

The acceleration of a body is directly proportional to the applied force, has the direction of the
applied force and is inversely proportional to the mass of the body. In other words,

a =
F

m
.
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The mass m is therefore a measure of the inertial effects of the body. In most cases, there are
multiple forces acting on the body. These forces can be superposed (vector summed) into a single
resultant force F =

∑

k Fk.
If we know the resultant of the forces acting on a body, we can calculate its acceleration according

to the law of force, and from the basic equations of kinematics also its velocity and position as
a function of time. From the mathematical point of view, the force law is generally a system of
ordinary differential equations of second order (equation of motion) of the form

m
d2r

dt2
= F

(

t, r,
dr

dt

)

, (1.1)

where r = r(t) is the position vector of the body. The equation of motion (1.1) has a unique
solution if it is supplemented with initial conditions (e.g. at time t = 0): r(0) = r0, v(0) = v0.
Thus, if a constant force F is applied to the body, we get for its acceleration a = F/m, and for the
velocity and position vector

a =
dv

dt
⇒ v =

∫

a dt =
F

m
t+C, v(0) = C = v0 ⇒ v =

F

m
t+ v0,

v =
dr

dt
⇒ r =

∫

v dt =
1

2

F

m
t2 + v0t+C, r(0) = C = r0 ⇒ r =

1

2

F

m
t2 + v0t+ r0.

Newton’s third law – the action-reaction law

Two bodies exert forces on each other of equal magnitudes but opposite orientations, lying on a
common line of force

F21 = −F12.

Mathematically, the sum of these forces is zero, but, this does not mean that they cancel each
other. Each acts on a different body.

1.2.2 Experiment

We will investigate Newton’s second law of motion by means of an experiment, which is schemati-
cally depicted in Fig. 1.1.
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Figure 1.1: Experimental set-up.

The gravitational force acting on
a weight of mass m1 through a pul-
ley accelerates a body (glider) of mass
m2, which moves along a horizontal
air-cushion track. The weight and
the glider are connected by a thin silk
thread, whose mass can be (by com-
parison with the masses of the other
objects) completely neglected.

The equation of motion (for the
component of the corresponding vec-
tors in the direction of the y axis) for
a weight of mass m1 has the form

m1a1 = m1g − T1 − Fd1, (1.2)
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where a1 is the acceleration of the weight, m1g is the gravitational force acting on the weight (g is
the acceleration due to gravity), T1 is the force tensioning the vertical part of the thread, and Fd1

is the drag which air exerts on the moving weight.
The equation of motion (for the component of the corresponding vectors in the direction of the

x axis) for the horizontally moving glider of mass m2 has the form

m2a2 = T2 − Fd2 − Ft, (1.3)

where a2 is the acceleration of the glider, T2 is the force tensioning the horizontal part of the thread,
Fd2 is the drag which air exerts on the moving glider, and Ft is the force of friction. As the glider
moves on air-cushion, the force of friction is negligible and can be neglected (Ft ≈ 0).

The equation of motion for the pulley has the form

Jε = rT1 − rT2 −Mb, (1.4)

where J is the pulley moment of inertia, ε is its angular acceleration, rT1 is the torque by which the
vertical part of the thread rotates the pulley clock-wise, rT2 is the torque by which the horizontal
part of the thread brakes the pulley, andMb is the torque of the force of friction braking the rotation
of the pulley. The design of the pulley used allows this torque to be neglected (Mb ≈ 0).

As both the bodies are rigidly connected by the thread, a1 = a2 = a. The thread on the pulley
does not slip, so ε = a/r. Adding Eq. (1.2) and (1.3) and substituting for T1−T2 from the relation
(1.4) gives the equation of motion

(

m1 +m2 +
J

r2

)

a = m1g − Fd1 − Fd2. (1.5)

The term J/r2 has the dimension of mass and it represents equivalent mass of the pulley meq; in
this particular case, meq = 2.2 g. This mass can be included into the mass of the glider so that
Eq. (1.5) becomes

(m1 +m′

2)a = m1g − Fd1 − Fd2, (1.6)

where m′

2 = m2 +meq = m2 + J/r2.
Next, we estimate the drag force of the environment acting on the moving bodies. We use

Newton’s formula

Fd ≈
1

2
CρSv2, (1.7)

where C is the drag coefficient depending on the body’s shape (C ≈ 0.5 for a sphere, C ≈ 1 for
a flat plate, C ≈ 0.03 for a drop-shaped body), S is the cross-sectional area, and ρ is the density
of the fluid in which the object moves. The drag force always acts in the direction opposite to the
object’s velocity vector.

Assume for a moment that the drag forces Fd1 and Fd2 are so small that they can be neglected
compared to the gravitational force m1g. From Eq. (1.6) we can calculate the acceleration

a =
m1g

m1 +m′

2

.

The velocity of the motion with constant acceleration from rest is a function of the distance s and
it can be expressed by the well-known formula1

v =
√
2as.

1It can be obtained by eliminating the time from relations s = at2/2 and v = at.
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Putting m1 = 0.02 kg (the maximum weight by which the pulley can be loaded), m2 ≈ 0.2 kg
(corresponding approximately to the mass of the glider), s ≈ 1 m, g = 9.81 m/s2, we get for
the maximum velocity of the weight and the glider vmax ≈ 1.3 m/s. Cross-sectional area of the
weight S1 ≈ 1.6 × 10−4 m2, cross-sectional area of the glider S2 ≈ 4.2 × 10−4 m2, the air density
ρ ≈ 1.2 kg/m3. Putting all these values into Eq. (1.7), together with C ≈ 1 results in the maximum
drag force Fd1 + Fd2 ≈ 6.1× 10−4 N. This force decreases the action of the gravitational force m1g
of the accelerating weight by only ca. 0.3 %, so that it can be, within this experiment, neglected.

Thus, the equation of motion for the weight and the glider moving on the air-cushion track has
the form

(m1 +m′

2)a = m1g. (1.8)

1.3 Instructions

Figure 1.2: Experimental set-up.

The aim of this measure-
ment is to “verify the va-
lidity” of the force law,
i.e., to show that the ac-
celeration of a body is
directly proportional to
the applied force and in-
versely proportional to
its mass.

In order to eliminate
frictional forces, the ac-
celerated body is repre-
sented by a glider mov-
ing on am air-cushion
along a horizontal path.

The accelerating force is realized by the weight which is connected to the glider via a pulley by a
thin thread. Since this force is constant, the acceleration of the glider is also constant and for its
position on the track we can write

s =
1

2
at2 + v0t+ s0.

The acceleration a of the glider is measured as follows. At time t = 0 the starter system releases
the glider, which from rest starts to move with constant acceleration along the track. At times
t1,2,3,4, a screen placed on the glider shades the light barriers at distances s1,2,3,4 from the launcher.
Using the least squares method (see paragraph 1.4), we approximate the measured values ti, si
with the parabola s = k2t

2 + k1t + k0, where the coefficient k2 corresponds to half of the glider
acceleration, k2 = a/2, the coefficient k1 corresponds to the initial velocity of the glider (it is not
always possible to ensure exactly zero initial velocity) and k0 corresponds to the launch position of
the glider.

1.3.1 Experimental set-up

The experimental set-up for the “verification of the validity” of the force law is shown in Fig. 1.2.
Check that the starter system at the end of the air-cushion track is turned with the movable

end out of the track. If not, loosen the clamping screws and rotate it. Connect the starter system
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to the timer terminals, see Fig. 1.3, marked START, with the red terminal on the starter system
to the yellow terminal on the timer.

Figure 1.3: Timer.

Connect the light barri-
ers to timer terminals 1-

4 so that the corresponding
colours match each other.

Switch the timer rotary
mode switch to the position 1.
Switch both slide switches to
the rightmost position. In this
mode and wiring, the individ-
ual timer displays show the
times from the glider launch
to the respective light barri-
ers shading by the screen at-
tached to the glider. The
measured times are reset by
pressing the RESET button.

Attach the plug with magnet (for the starter system) to the glider on one side and the plug
with hook for attaching the thread on the other side. Place a stopper with a braking rubber band
on the air track in such a distance to stop the glider before the weight hits the floor.

Place the light barriers evenly along the air track and measure their distances from the starter
system. This is best done as follows. Attach the glider to the starter system and read its position
on the scale along the air track. Switch the timer to the position 2 (in this mode, the display of
each light barrier shows the time from cover to uncover), move the glider to the vicinity of the
light barrier, and see at what position the timer starts (and stops). At this point, read the glider
position. Remember to switch the timer back to the position 1 after reading the positions of all
light barriers.

Turn on the blower, set the airflow to position 3-4. Check that the glider can move freely along
the air track and that it does not move spontaneously after being brought to rest. If it does, adjust
the air track to the horizontal position as best you can. Check this setting from time to time during
the measurements, especially when loading the glider.

1.3.2 Procedure

Acceleration of a body for constant force and different masses

1. Set up and adjust the experiment according to the instructions described in the previous
paragraph.

2. Place one 10 g weight on the holder attached to the thread and measure the total mass m1

(accelerating weight). Measure the mass of the glider m2 (including the screen, the magnet
for the starter system and the hook for attaching the thread).

3. Pull the starter and attach the glider to it, check that the thread is stretched over the

pulley (sometimes it falls off).

4. Use the RESET button to reset the timer, release the glider with the wire trigger and read
the glider’s passage times through the light barriers on the timer. Make the measurement at
least 5×.

5



5. Place symmetrically two weights of 10 g each on the glider and continue with the measure-
ment in step 3.

6. For each inertial mass (m1+m′

2)i, calculate the acceleration of the glider ai from the measured
data, see the first paragraph of Instructions.

7. Use these values to calculate the force accelerating the glider (see paragraph Calculations –
Method of reduction) and compare it with the force F = m1g.

8. Plot a graph comparing the theoretical acceleration versus the glider mass

a =
m1g

m1 +m′

2

together with the measured accelerations ai for the individual masses (m1 +m′

2)i.

Acceleration of a body for different forces and constant mass

Contrary to the previous measurement, the difference is that now the total massm1+m′

2 is constant.

1. Place one 10 g weight on the holder attached to the thread and measure the total mass m1

(accelerating weight). Determine the mass of the glider m2 (including the screen, the magnet
for the starter system, and the hook for attaching the thread), on which you also place
symmetrically 20 one-gram weights.

2. Pull the starter and attach the glider to it, check that the thread is stretched over the

pulley (occasionally it will fall off).

3. Use the RESET button to reset the timer, release the glider with the wire trigger and read
the glider’s passage times through the light barriers on the timer. Make the measurement at
least 5×.

4. Transfer two one-gram weights (one from each side) from the glider to the holder with the
accelerating weight and continue with the measurement in step 2.

5. For each accelerating weight (m1g)i, calculate the acceleration of the glider ai from the mea-
sured data, see the first paragraph of Instructions.

6. Use these values to calculate the inertial mass m1+m′

2 and compare it with the actual value.

7. Plot a graph comparing the theoretical acceleration versus the accelerating force m1g.

a =
m1g

m1 +m′

2

together with the measured accelerations ai for individual values (m1g)i.

1.4 Calculations

1.4.1 Least squares method

You have several options for approximating the measured values with a second degree polynomial.
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Planck

You can use the script Universal tool for plotting graphs available at server
http://planck.fel.cvut.cz/praktikum/.

Matlab

In Matlab, you can use the command polyfit. Example:

% measured data

x = [0, 0.1, 0.2, 0.3, 0.4]; % independent variable

y = [0, 0.05, 0.2, 0.4, 0.8]; % dependent variable

n = 2; % degree of the polynomial

p = polyfit(x,y, n); % calculates the polynomial’s coefficients

% acceleration: the first element represents the coefficient of

% the highest power and the acceleration is twice its value

a = 2*p(1)

Maple

You can use the command fit from the library stats. Example:

> with(stats): # initialization of the library

> dx := [0, 0.1, 0.2, 0.3, 0.4]; # independent variable

> dy := [0, 0.05, 0.2, 0.4, 0.8]; # dependent variable

> # returns the approximation function, here, y=a*x^2+b*x+c

> fit[leastsquare[[x,y], y=a*x^2+b*x+c]]([dx, dy]);

1.4.2 Method of reduction

For several total masses mi = (m1 +m′

2)i, i = 1 . . . N (accelerating weight + glider + correction)
we measured and calculated the corresponding accelerations of the glider ai. From the relation
(1.8) we have to calculate the accelerating force F = m1g. The most straightforward method in
this case is probably the method of reduction. The principle is very simple.

1. For the individual measured accelerations we calculate the corresponding accelerating forces
Fi = miai.

2. The estimate of the accelerating force is calculated as the mean value for the individual mea-
sured and calculated values Fi, the uncertainty of this estimate is expressed by the empirical
standard deviation

F =
1

N

N
∑

i=1

Fi, sF =

√

∑N

i=1
(Fi − F )2

N(N − 1)
.
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We can proceed in a similar way in the second case, where for different accelerating forces
Fi = (m1g)i we have measured and calculated the corresponding accelerations of the glider ai.
From the relation (1.8) we calculate the corresponding inertial masses mi = Fi/ai and from these
values we then calculate the mean value and estimate its standard deviation.
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