
Laboratory experiment

Measurement of permittivity

of dielectric materials

1.1 Tasks

• Determine the relative permittivity of one or two samples of dielectric materials.

• For each sample (in each case in one graph) plot the dependence of the charge of the capac-
itor on the voltage with and without the dielectric sample placed between the plates of the
capacitor.

1.2 Introduction

1.2.1 Coulomb’s law
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Let there be a (source) point particle with electric charge q in the vac-
uum and with the position vector r′ and another (test) point particle
with charge q0. According to Coulomb’s law, an electrostatic force
acts on the test particle which reads

F =
q0q

4πε0

R

|R|3 , (1.1)

where R = r−r
′ is the position vector of the test charge with respect

to the source charge. In the SI system, the unit of charge is coulomb (C), the quantity ε0 is called
the electric constant (permittivity of free space) with the value

ε0 == 8.854 187 8128(13)× 10−12C2N−1m−2,

If both the charges have the same sign, the vectors F and R have the same direction (charges repel
each other), in the case where the charges have opposite signs, the vectors F and R point in the
opposite directions and the charges attract each other. According to the Newton’s third law, the
force −F acts on particle with charge q,

If we change the position of the test charge in space (by changing the position vector r), the
magnitude and direction of the force acting on it will also change. The magnitude and direction
of this force are also related with the value and sign of the test charge q0. In order to be able to
simply describe the force action on any test charge, we introduce the so-called electric field by the
defining relation

E ≡ F

q0
,
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which is thus numerically equal to the force acting on the unit charge1. The vector E has the same
direction as the force F acting on the positive charge q0. We then say that the charge q creates
an electrostatic field around it with intensity E = E(r). In the case of a single source charge, the
substituting into the formula (1.1) yields in

E(r) =
q

4πε0

r− r
′

|r− r′|3 .

If there are more source point charges distributed in space, according to the superposition principle,
the electric field they create in their surroundings can be calculated as

E(r) =
1

4πε0

N∑
i=1

qi · (r− r
′

i)

|r− r′i|3
, (1.2)

where r
′

i are the position vectors of the individual charges qi.
In many practical cases2 the charges are distributed in space so densely that their contributions

cannot be added together by a summation. In these cases, we introduce the so-called charge
density (length, area, volume) and “add their contribution” using the integral, as if the charge were
a continuous quantity. Let’s give an example. Let the charges be on some surface S. We divide
this area into individual elementary ones dS ′, where each of them will possess an elementary charge
dq = σdS ′, where σ = σ(r′) is the surface charge density (charge per unit area). We then get for
the electric field at r the result

E(r) =
1

4πε0

∫∫

S

σ(r′) · (r− r
′)

|r− r′|3 dS ′. (1.3)

1.2.2 Gauss’s law
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Calculating integrals of type (1.3) can be quite difficult in many cases.
However, in some cases, Gauss’s law can be used to calculate the electric
field. It has the form ∫∫

©
S

E · dS =
Q

ε0
. (1.4)

The formula (1.4) states that the flux of the electric field vector through
any closed (Gaussian) surface S is equal to the ratio of the total charge
Q within this surface and the electric constant. The elementary vector
dS = n dS is oriented by the unit vector n perpendicular to the area dS

outwards from the closed surface S.
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The Gauss’s law is equivalent for the electrostatic problems to
the Coulomb’s law. It can be conveniently used to calculate the
electric field in cases where the charge distribution has a symmetry
(planar, cylindrical or spherical). Here are two simple examples.

Consider an infinite, uniformly charged planar surface with sur-
face charge density σ > 0. A distinctive direction to the planar
surface is the normal to it, so the electric field vector must point
perpendicular to the planar surface. Since it is positively charged,

1It follows from the definition that the unit of electric field in SI system is newton per coulomb (NC−1), but
more often volt per meter is used (Vm−1), which has the same size (1NC−1 = 1Vm−1).

2More precisely, for the vast majority of cases. . .

2



it will certainly point away from it. For the Gaussian integration surface we choose the surface of
the cylinder, which the plane intersects and whose bases are parallel with the charged plane. If the
base area of this cylinder is ∆S, Q = σ∆S applies to the total charge enclosed by the integration
surface. Thus, we can write for the surface integral in the formula (1.4) that

∫∫
©
S

E · dS =

∫∫

bases

E · dS+

∫∫

side

E · dS. (1.5)

Since E ⊥ (n dS) holds everywhere on the cylinder side, the second of the integrals (1.5) is zero.
On the bases, the electric field vector has the direction of the outer normal and (due to symmetry)
its magnitude is constant, so

∫∫
©
S

E · dS =

∫∫

bases

E · dS =

∫∫

bases

EdS = E

∫∫

bases

dS = 2E∆S.

Substitution to the Gauss’s law then results in

2E∆S =
σ∆S

ε0
⇒ E =

σ

2ε0
. (1.6)

The magnitude of the electric field vector is therefore constant, it does not decrease with the
distance from the charged plane. This result may seem paradoxical at first glance, it is caused by
the fact that we consider an infinite plane (and thus an infinite charge). In a more realistic case, if
we considered a limited planar surface, the result (1.6) would apply approximately only in its close
vicinity.

+σ −σ
Let’s now consider the case of two parallel planes which are uniformly charged by

surface charge densities of the same size but of opposite sign. Each of the planes in
its vicinity creates the electric field, the magnitude of which is given by the relation
(1.6). In the case of the positively charged plane the electric field vector points outside
from the plane, in the case of the negatively charged plane it points towards it. This
means (see the figure) that between the planes, the contributions are added to each
other and they are subtracted from each other outside. Thus, between the planes, the
magnitude of the electric field reads

E =
σ

ε0
, (1.7)

S

d

+Q −Q

+−

and its magnitude is zero outside.

1.2.3 Capacitor, capacitance

A capacitor is an electronic component in which energy can be
stored in the form of an electric field. In practice, it most often
consists of two conductors (electrodes), which are placed close
to each other, but they are insulated from each other. These
can be represented by two plane-parallel plates with an area of
S placed at a distance d from each other, see the figure, then we
are talking about the so-called plate capacitor.

If we connect a battery to such a system, see the figure, free
charge carriers (negatively charged electrons) are attracted to
the positive terminal of the battery and they are thus pumped out of the left capacitor plate, where

3



positively charged ions of the crystal lattice remain. The left plate thus starts to be charged with a
more positive charge, than the right one. This creates an electrostatic field in the capacitor, which
attracts electrons from the negative terminal of the battery to the right plate. The whole process
continues until the capacitor is charged to the battery voltage U . On the left plate there is an
accumulated positive charge Q, on the right plate there is a negative charge −Q. A characteristic
feature of the capacitor is the capacitance, which describes the relationship between the voltage and
charge accumulated on the capacitor3. We will investigate it for the case of the above-mentioned
plate capacitor.

If the distance between the charged plates with respect to their dimensions is very small, it can
be assumed that the charge is distributed on them more or less evenly, which creates a more or less
homogeneous electrostatic field between the plates, for the magnitude of its intensity will roughly
apply the relation (1.7).

+σ

−σ

0

x

d

The voltage (between points A and B) is de-
fined as the work done by the electrostatic field
when moving the unit charge from the point A
to the point B, namely,

U =

∫
rB

rA,L

E · dr. (1.8)

Since the electrostatic field is a conservative
field, the work done does not depend on the specific integration path L. The integral (1.8) is
calculated along a line of force from the positively charged electrode to the negatively charged
electrode, so we get

U =

∫ d

0

E dx =

∫ d

0

σ

ε0
dx =

σd

ε0
=

d

ε0S
Q, (1.9)

where we used the relation for the surface charge density σ = Q/S. It can be seen from the
formula (1.9) that there is a direct relationship between the voltage between the electrodes and the
accumulated charge. The proportionality constant is called the capacitance of the capacitor, we
introduce it by a definition relation

C =
Q

U
(1.10)

and numerically it is thus the charge accumulated on the capacitor at the potential difference 1V
between the electrodes. The unit of capacity is farad = coulomb per volt (F). Therefore, in the
case of a plate capacitor it holds

Cvac =
ε0S

d
, (1.11)

where the index “vac” indicates that we consider a materialless environment (vacuum) between the
electrodes. The capacity of the plate capacitor is thus greater the larger the area of the electrodes
and the closer they are to each other. The formula (1.11) holds only approximately, in its derivation
the assumption was used that the charge on the plates is distributed evenly and that the electric
field between them is homogeneous. In fact, the so-called scattering phenomenon occurs at the
edges of the plates, the formula (1.11) holds with an accuracy of about 20% if d/

√
S ∼ 0.1 and

with an accuracy of about 2% if d/
√
S ∼ 0.01.

In addition to the geometric arrangement, the capacitance of a capacitor can be influenced by
inserting a suitable non-conductive material between its electrodes.

3The attentive reader probably did not miss the fact that the total charge of the capacitor is zero, because
Q + (−Q) = 0. In this case, the term “charge of the capacitor” means the absolute value of the charge on one of
the plates.
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1.2.4 Dielectric materials

The dielectric is a non-conducting material4, which has the ability to get polarized. In terms of
atomic or molecular structure, we can divide the dielectrics into two categories.

Polar dielectrics
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Molecules of polar dielectrics are
characterized by the fact that even
in the absence of an external elec-
tric field, they have a non-zero elec-
tric dipole moment. That is, even
though the molecule is electrically
neutral, the positive and negative
charges are distributed asymmetri-
cally in the molecule, it is “more
positively” at one end and “more
negatively” charged at the other
end. A typical representative of a polar dielectric is water. Without the presence of an external
electric field, the individual molecules are oriented completely randomly. By applying an external
electric field with the intensity E0, they are rotated in the direction of the external field. Because
the molecules perform a constant thermal motion, they are not completely oriented. The stronger
the external electric field and the lower the temperature, the stronger and more complete the ori-
entation is. The molecules arranged in the dielectric create an additional electric field E

′, which in
an isotropic dielectrics points in the opposite direction to the external field. For the total electric
field in the dielectric then E = E0 +E

′.

Non-polar dielectrics

E0

E
′

+Q −Q
Whether or not they have their own
non-zero dipole moment, the atoms
and molecules of the dielectric in
the external electric field acquire an
induced dipole moment. This is
caused by shifting the center of the
positive charge region in the direc-
tion of the external electric field and
the center of the negative charge re-
gion in the opposite direction. This
again creates an additional electric
field in the dielectric with the intensity E

′, which points in the opposite direction than the external
field with the intensity E0 and thus again influences the total electric field E = E0+E

′. The effect
of the induced dipole moments is significantly weaker compared to the effect of their own dipole
moments. A typical representatives of the non-polar dielectrics are inert gases, or for example, H2,
O2.

4Due to the material structure, free charge carriers cannot move at too large distances under the influence of an
electric field.
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1.2.5 Capacitor with a dielectric

If we insert a dielectric between the electrodes of a capacitor, the dielectric will polarize after the
capacitor is charged. Due to the polarization, the magnitude of the total electric field is not E0,
but E = E0 −E ′. For the dielectrics, we introduce the relative permittivity εr as a fraction

εr =
E0

E
=

E0

E0 −E ′
,

which states how many times the magnitude of the electric field decreases with the presence of a
dielectric compared to the case of the materialless environment (vacuum).

Material εr [–]

Vacuum (exactly) 1
Air 1.000 54
Polystyrene 2.3–2.5
Teflon 2–2.2
Plexiglass 2.8–3.2
PVC 3.4–4
Glass 4–8
Mica 6–7
Silicone 11.7
Water (20 ◦C) 80.4

Table 1.1: Relative permittivity
of some materials.

If we calculate the voltage between the capacitor plates (1.9)
with a dielectric (where we substitute E/εr instead of E), we
obtain

U =
d

ε0εrS
Q.

For the capacitance it holds

C =
ε0εrS

d
. (1.12)

The quantity ε = ε0εr is called the absolute permittivity of a
dielectric.

For many dielectrics and not very strong electric fields, the
magnitude of the induced electric field E ′ is directly propor-
tional to the magnitude of the intensity E0 and thus the rela-
tive permittivity is their material constant5. By comparing the
formulas (1.11) and (1.12) we can see that

C = εrCvak. (1.13)

Inserting a dielectric between the capacitor plates increases its capacitance εr-times.

1.3 Experiment

1.3.1 Experimental set-up

The experimental set-up is shown in Fig. 1.1. The relative permittivity is determined by inserting
the measured dielectric sample into the measuring plate capacitor 4 , measuring its capacity, then
measuring the capacity without the sample, and using the relation (1.13)6. The capacitance of
the measuring capacitor (with or without the sample) can be determined by measuring the linear
dependence between the accumulated charge and the voltage at the electrodes, the capacitance
is the direction of the dependence Q = Q(U), where the voltage U is set on the high-voltage
power supply 5 . The principle of the accumulated charge determination is schematically shown
in Fig. 1.2.

5In the case of alternating electric fields, it must be taken into account that the relative permittivity is also a
function of frequency.

6The relative permittivity of the air (see Table 1.1) is close to one, the replacement of the materialless environment
by air in this experiment does not cause any measurable systematic error.

6



Figure 1.1: Experimental set-up: 1 – voltmeter, 2 – reference capacitor, 3 – universal measuring

amplifier, 4 – measuring plate capacitor (with inserted dielectric sample), 5 – high voltage power

supply, 6 – high-value protective resistor.
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Figure 1.2: Experimental set-up.

First, a measuring capacitor of un-
known capacitance Cx is charged via a pro-
tective resistor with a resistance of 10MΩ
to the required voltage U (set on the power
supply). This will accumulate a (yet un-
known) charge on it

Q = CxU. (1.14)

Then, by switching the switch, the mea-
sured capacitor is disconnected from the
high-voltage power supply and connected in parallel to a reference capacitor with known capaci-
tance of C0 = 216 nF. This redistributes the charge Q between the two capacitors, so that there
will be a voltage Ux on them, for which it holds

Q = (C0 + Cx)Ux. (1.15)

The voltage Ux is measured with a voltmeter connected via a measuring amplifier with a high input
resistance (so that the capacitors do not discharge too quickly). By combining the formulas (1.14)
and (1.15) we get the relationship between the charge Q and the measured voltage Ux in the form7

Q = C0

UUx

U − Ux

, (1.16)

if Ux ≪ U it can be simplified as
Q ≈ C0Ux. (1.17)

The unknown capacitance Cx can be then determined employing the method of least squares8

by approximating the measured dependence Q(U) by a straight line.

7The perceptive reader will surely think of combining relations (1.14) and (1.15) it is possible to eliminate the
charge Q and directly calculate the capacity Cx. This is true, but our intention here is to verify that there is a direct
proportion between the set voltage U and the measured charge Q (relation (1.14)).

8For example, it is implemented at server https://planck.fel.cvut.cz/praktikum/ — “An universal tool for plotting
graphs - least squares method”.
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Figure 1.3: Universal measuring amplifier (left panel), high-voltage power supply (right panel),
1 – high-impedance input (R = 10TΩ, input range ±10V), 2 – button for the discharging the

reference capacitor, 3 – input mode switch (it should be switched to position “Electrometer”), 4

– potentiometer for zeroing the output voltage, 5 – amplifier gain selector, 6 – time-constant of

the low-pass filter (it should be switched to position “0”), 7 – output terminal for connecting a

voltmeter (max. output voltage ±10V), 8 – potentiometer for setting the output voltage , 9 –
switch for the mode selection (it should be switched to the left position – upper branch, 0–5 kV),
10 – output terminal 0–5 kV, 11 – earth terminal.

1.3.2 Measurement safety

The experiment is switched on and off by the teacher. Do not change the wiring of the experiment,
nor disconnect it. When measuring, we work with a voltage of up to 5 kV. When measuring, a
protective resistor of 10MΩ must be connected in the live output of the high-voltage power supply,
which limits the maximum output current to 0.5mA. The standard9sets the maximum output
current of the power supply to 10mA or 3mA, if it is necessary to touch the device with your
hands during operation.

Before handling the measuring capacitor (dielectric sample replacement), set the output voltage
to zero. During the measurement, a charge of the order of units of µC will accumulate on the
measuring capacitor. The standard stipulates that the accumulated charge between currently
accessible parts of the equipment must not exceed 50µC.

It follows from the above that there is no danger when performing the experiment according to
the instructions.

Note

The dielectric strength of the air is about 3MVm−1, if you bring the condenser plates too close to
each other, electrical breakdown and sparking may occur. This does not damage the device.

1.3.3 Procedure

1. Ask the teacher to switch on the experiment (he/she will first check whether the high-voltage
power supply is set to the minimum output voltage, it is connected to the measuring capacitor,
whether it is not short-circuited and whether the reference capacitor is connected to the
measuring amplifier).

9This is the standard ČSN 33 2000-4-41.
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2. Set the output voltage of the high-voltage power supply to zero, insert a dielectric sample
between the plates of the measuring capacitor and use a plastic rotating element to set the
distance between the plates so that there is no air gap between the sample and the plates.

3. Use the switch on one of the capacitor plates to connect the capacitor to the high-voltage
power supply. Use the potentiometer to increase the voltage by 500V.

4. Discharge the reference capacitor with the button on the measuring amplifier. The voltmeter
should show zero voltage, if not, adjust it with the appropriate potentiometer on the amplifier.

5. Connect the measuring capacitor to the reference capacitor with the switch on the measuring
capacitor plate, read the voltage Ux on the voltmeter. If the voltmeter shows a voltage greater
than1010V, or too low voltage, adjust the gain of the measuring amplifier, or the range of the
voltmeter and repeat the measurement.

6. Proceed with step 3 up to the voltage of 5 kV.

7. Set the voltage of the high-voltage power supply to zero, loosen the plates of the measuring
capacitor, remove the dielectric sample and return the plates to their original separation
distance.

8. Repeat the whole measurement without a dielectric sample.

9. Plot both dependencies Q(U) in one graph, calculate the relative permittivity of the dielectric
sample (and its uncertainty).

10. If you have time, perform the measurements for another dielectric sample.

11. Set the voltage of the high-voltage power supply to zero, remove the dielectric sample from
the measuring capacitor and ask the teacher to check and switch off the experiment.

1.4 References

1. D. Halliday, R. Resnick, J. Walker: Fyzika – Elektřina a magnetismus, VUTIUM Brno a
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10The maximum output voltage of the measuring amplifier is just 10V.
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