
Laboratory experiment

Determination of shear modulus and

moment of inertia by dynamic method

1.1 Tasks

1. Measure the shear modulus of a steel string.

2. Determine the moment of inertia of a rotor of an electric motor by the method of torsional
oscillations.

1.2 Introduction

1.2.1 Moment of inertia
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Figure 1.1: A rotating rigid body.

Let’s have a rigid body that can rotate around a fixed
axis O, see Fig. 1.1. Such a body can only perform a
rotational motion around the axis O and its position is thus
completely determined by means of the angle of rotation.
Imagine that the body is made up of a total of N point
particles of mass mi, where i = 1, . . . , N . The total kinetic
energy of this system can be thus calculated as
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where vi is the velocity magnitude of the i-th point par-
ticle. As we assume that the body is rigid, the individual
material point particles that make it up do not change
their position relative to each other. If the rigid body
rotates with an angular velocity ω, its individual points
move along circular trajectories and the following applies
for their circumferential velocities

vi = ωri, (1.2)

where ri is the distance of a given point from the rotation axis O. If we substitute the relation
(1.2) into (1.1) we obtain the relation for the total (rotational) kinetic energy of the rigid body as
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where the quantity
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, (1.4)

only depends on the mass distribution of the body with respect to the rotation axis and it does
not depend on the angular velocity of the body. The quantity J is called the moment of inertia
with respect to the given axis. For different axes of rotation, a given body generally has different
moments of inertia.

The moment of inertia plays a key role in the dynamics of rotational motion and expresses
the degree of inertia of the body in rotational motion, similarly as the (inertial) mass of the body
in the translational motion. For practical calculations of the moment of inertia of a body with a
continuously distributed mass, we can replace the individual material point particles in the relation
(1.4) with the masses of elementary volumes mi → dm = ρdV , where ρ is the density at a given
point, replace the sum with a volume integral and write

J =

∫

V

ρr2dV, (1.5)

where r represents the distance of element dV from the rotation axis.

Example: Moment of inertia of a cylinder
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Figure 1.2: Calculation of moment of
inertia of a cylinder.

The calculation of the moment of inertia is illustrated by
the example of a homogeneous cylinder with radius R and
height h for the axis of rotation identical to its geometric
axis, see Fig. 1.2.

To avoid calculating the multiple (triple) integral, we
express the volume element dV using a suitable single vari-
able, here, the appropriate variable is r. Geometrically,
the element dV is a cylindrical shell with the height h,
the radius r and the wall thickness dr, see Fig. 1.2. The
volume of this element can be found either as a differential
of the volume of the cylinder

V = πr2h ⇒ dV = 2πhrdr,

or by “straightening” the shell to a thin block with sides
h, 2πr, dr. The integration over the entire volume results in

J = 2πρh

∫

R

0

r3 dr =
πρhR4

2
.

The cylinder density can be expressed as

ρ =
m

V
=

m

πr2h
,

so the moment of inertia can be written as

J =
1

2
mR2. (1.6)

1.2.2 Shear elasticity

Let’s have a prism with height h and bases with area S. If oppositely oriented tangential forces of
the same magnitude F act on the upper and lower bases, shear stress and deformation of the prism
occur. The side walls are skewed by the shear angle γ ≈ tan γ = u/h, see Fig. 1.3.
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Figure 1.3: Shear stress.

The tangential stress τ has the magnitude

τ =
F

S
.

If the height of the prism h is small enough, bending of the prism can
be neglected and the Hooke’s law1 applies for the shearing angle γ as

γ =
τ

G
, (1.7)

where the proportionality constant G is called the shear modulus and it is a material constant, the
value of which for a given material can be found in the tables, see, e.g., Table 1.1 on page 6.

1.2.3 Torsion elasticity
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Figure 1.4: Torsion stress.

Shear elasticity is manifested, among other things, by
torsion, or torsional loading of bodies. Consider a rod
(string) of a circular cross-section, length l and radius
a, which we subject to torsional stress with a torque of
magnitude M , see Fig. 1.4. The volume of the rod can
be divided into elementary cylindrical shells of height
l, radius r and thickness dr. The individual shells are
loaded with the tangential stress τ and they shear γ =
τ/G according to Hooke’s law. Rotation angle ϕ is the
same throughout the cross section, so u = rϕ = lγ. By
substituting into Hooke’s law, we get

τ = G
rϕ

l
,

which means that the tangential stress increases linearly
with the distance r from the center of the rod. An
elementary torque acts on the elementary intermediate ring (upper base of the cylindrical shell)
with area dS = 2πrdr which reads

dM = rdF = rτdS = 2πG
r3ϕ

l
dr

and a total torque acts on the entire base

M = 2πG
ϕ

l

∫

a

0

r3dr =
πa4G

2l
ϕ = kTϕ, (1.8)

where kT = πa4G/2l is called the torsional stiffness2 of the rod (string).

1This empirical rule also applies only if the tangential stress does not become too high.
2Note the strong dependence of the torsional stiffness on the radius. This property is employed in sensitive

torsional scales with very thin fibres allowing to achieve measurable rotations even at very small torques. Torsional
scales were used, for example, by Coulomb to determine the force acting between charges and by Cavendish to
determine the gravitational constant.
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1.2.4 Torsion pendulum

On a string of length l and diameter d we hang a body (flywheel) with a known moment of inertia
J with respect to the axis of the suspension, twist the string by an angle ϕ0 and release. The body
on the string begins to perform torsional oscillations - we built the so-called torsion pendulum.

In order to twist the string by an angle ϕ, there must be a torque M = kTϕ, acting on it,
see Eq. (1.8). According to Newton’s Third law, torque M ′ = −M = −kTϕ is the reaction to
the torque M , which tries to return the string to the original position, so that we can write the
following equation of motion for the body hung on the string

Jϕ̈ = M ′ ⇒ ϕ̈+ ω2

0
ϕ = 0, (1.9)

where

ω0 =

√

kT
J

=

√

πd4G

32lJ
(1.10)

is the angular frequency of the torsional oscillations, as we can recognize the equation of linear
harmonic oscillator in Eq. (1.9). For one swing period3Tk of the torsion pendulum we get

Tk =
π

ω0

=

√

32πlJ

d4G
. (1.11)

The relation (1.11) can be employed to determine the moment of inertia of the hung body (if we
know the shear modulus of the string), or, if we know the moment of inertia of the hung body, we
can rewrite Eq. (1.11) into the form

G =
32πlJ

d4T 2

k

, (1.12)

which is suitable for the determination of the shear modulus of the string material.

1.3 Procedure

1.3.1 Determination of shear modulus

1. Measure the length of the string with a steel rule.

2. Measure the diameter of the string with a micrometer at least 10×.

3. Measure the diameter of cylindrical plate serving as a flywheel with a caliper. Its weight is
indicated on it. Calculate its moment of inertia using the relation (1.6).

4. Hang the cylindrical plate on the string. Turn it by angle of approx. 60◦− 90◦, release it and
start to measure the swing period Tk of the torsional oscillations.

5. Use the method of limitations for the determination of the swing period (see Appendix 1.4).

6. Determine the standard uncertainty of the swing period u(Tk). Substitute the swing period
Tk into the formula (1.12) and calculate the shear modulus G of the string material.

7. Calculate the combined standard uncertainty of the shear modulus of the string material.

3One entire cycle duration T consists of two swings (back and forth), so that for one swing period Tk we get
Tk = T/2.
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1.3.2 Measurement of the moment of inertia of a rotor of an electric

motor

1. On a string whose parameters you know from the previous measurements, hang the body
whose moment of inertia you want to measure.

2. Let the system perform torsional oscillations and use the method of limitations (see Appendix
1.4) to determine the swing period Tk of the system.

3. Use the swing period Tk in Eq. (1.12) to determine the moment of inertia J of the examined
body.

4. Calculate the combined standard uncertainty of the moment of inertia of the examined body.

1.4 Appendix – Method of limitations

This method is suitable for measuring periodic events, in particular if the repetition period is
large. Its main advantage is that it is possible to achieve theoretically arbitrary accuracy without
laboriously counting the number of periods.

It is enough to know the estimate of the maximum error, that we can make when measuring
one period of the studied process. Let’s demonstrate the method on the example of measuring the
swing period of the torsion pendulum.

The swing period of the used torsion pendulum is ca. 5 seconds.
We choose the duration of 10 swings as the elementary period and measure it by a stopwatch:

10Tk = 52.8 s.

We estimate the value of the maximum measurement error we have made as 0.4 s (which depends
on the used stopwatch and experimenter’s reaction time) and thus we obtain the duration of 10
swings in interval

52.4 s < 10Tk < 53.2 s.

For the duration of 20 swings we can expect the interval

104.8 s < 20Tk < 106.4 s.

As this interval (106.4 − 104.8 = 1.6 s) is shorter than the duration of one swing Tk ≈ 5.24 s, we
can start the stopwatch at the beginning of any swing and without the swings counting to stop it
at the end of the swing which ends after the time of 104.8 s. The stopwatch may show the time,
e.g., 105.4 s. Thus we find out that the uncertainty interval for the duration of 20 swings is

105 s < 20Tk < 105.8 s.

From this, for the duration of 100 swings we get

525 s < 100Tk < 529 s.

Also in this case the difference (529−525 = 4 s) is smaller than the duration of one swing and thus
when reading the time of the end of the swing after 525 s we obtain the duration of 100Tk. If it is,
e.g., 527.3 s, we know that the duration of 100 swings is in interval

526.9 s < 100Tk < 527.7 s,

5



and from here, we immediately get

5.269 s < Tk < 5.277 s.

The expected value of the swing period is therefore with a high probability anywhere in the interval
±0.004 s around the calculated value, so the standard uncertainty (determined by method of type
B) can be estimated as u(Tk) ≈ (0.004/

√
3) s = 0.0023 s.

It is obvious that with this procedure we can achieve great accuracy for long enough periodic
processes. A necessary condition is the choice of only such multiples of the elementary period that
the uncertainty limits are smaller than the measured period.

1.5 Appendix – Selected properties of some materials

Material E G k
[1010 Pa] [1010 Pa] -

Aluminium 7.07 2.64 0.34
Copper 12.3 4.55 0.35
Lead 1.6 0.56 0.44

Diamond 112 52 0.1
Zinc 9.0 3.6 0.25
Iron α 21.2 8.2 0.29
Steel 20-21 7,9-8,9 0,25-0,33

Steel (1% C) 21.0 8.1 0.29
Welding steel 20.4 7.9 0.29

Bronze 9.7-10.2 3.3-3.7 0.34-0.40
Phosphor bronze 12.0 4.36 0.38

Brass 9.9 4.2 0.37
Duralumin 7.25 2.75 0.34
Plexiglass 0.33 0.12 0.35

Table 1.1: Young’s modulus E, shear modulus G, and Poisson’s constant k for selected materials
at room temperature.
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