
Laboratory experiment

Determination of the specific charge of

the electron

1.1 Task

From the curvature of the paths of electrons moving in a magnetic field, determine the specific
charge of the electron.

1.2 Theory – Motion of a charged particle in an electric

and magnetic field

1.2.1 The Lorentz force law

If a charged particle with charge q moves with velocity v in an electric field E and magnetic field
B, there is so-called Lorentz force acting on it which can be mathematically described as

F = q [E + (v×B)] . (1.1)

If we limit ourselves to non-relativistic speeds v = |v| ≪ c, where c is the vacuum speed of light,
we can write the equation of motion for the particle as

m
d2r

dt2
= q [E + (v×B)] , (1.2)

where m is its mass, and r is the position vector. The solution of Eq. (1.2) can be found provided
the initial conditions are known at a given (say, zero) time in form

r(t = 0) = r0, v(t = 0) =
dr

dt

∣

∣

∣

∣

t=0

= v0. (1.3)

1.2.2 Motion of a charged particle in a uniform electric field

If it holds B = 0, Eq. (1.2) reduces into

m
d2r

dt2
= m

dv

dt
= qE. (1.4)

If the electric field is uniform, it holds E = const., so that we can write

dv

dt
=

qE

m
⇒ v =

∫

qE

m
dt =

qE

m
t +C1,
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where the constant of integration1 can be determined from the initial condition (1.3) as C1 = v0,
so that for the particle velocity we get

v =
qE

m
t+ v0. (1.5)

The speed of the particle changes with the time, if the vectors E and v0 are parallel, the motion
takes place along a straight line, otherwise the trajectory is curved.

Integration of Eq. (1.5) results in the time dependence of the particle position vector as

r =

∫

vdt =
1

2

qE

m
t2 + v0t+C2,

where the constant of integration can be determined employing the initial condition (1.3) as C2 =
r0, namely,

r =
1

2

qE

m
t2 + v0t+ r0. (1.6)

1.2.3 Motion of a charged particle in a uniform magnetic field

If it holds E = 0, the equation of motion (1.2) can be written in form

dv

dt
=

q

m
v×B. (1.7)

If the magnetic field is uniform, i.e., B = const., the coordinate system can be, without the loss
of generality, oriented such that the coordinate z has the direction of the magnetic field vector,
namely, B = (0, 0, B), where B > 0. Then the cross-product in Eq. (1.7) reads

v×B =

∣

∣

∣

∣

∣

∣

i j k

vx vy vz
0 0 B

∣

∣

∣

∣

∣

∣

= vyBi− vxBj,

so that Eqs. (1.7) can be written as

dvx
dt

=
qB

m
vy,

dvy
dt

= −qB

m
vx,

dvz
dt

= 0. (1.8)

The third of Eqs. (1.8) is decoupled from the first two and it follows from it that the z-component
of the velocity vector (in the direction of the magnetic field) is time-independent and it holds

vz = vz0, z = vz0t+ z0. (1.9)

The solution of the set of the first two of Eqs. (1.8) can be most easily found employing the
following trick. We introduce a complex velocity v̂ ≡ vx + jvy, multiply the second of Eqs. (1.8)
with the imaginary unit and add to the first of the equations. This results in

dvx
dt

+ j
dvy
dt

=
dv̂

dt
=

qB

m
(vy − jvx) = −j

qB

m
v̂ ⇒ dv̂

dt
+ jωcv̂ = 0, (1.10)

where

ωc =
qB

m
(1.11)

1More precisely said, it is a constant vector.
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is the so-called cyclotron frequency. It can be easily proved by direct substitution, that the solution
of Eq. (1.10) reads

v̂ = Ĉe−jωct,

where Ĉ is a constant of integration, which can be found by substituting the initial condition
v̂(t = 0) = vx0

+ jvy0 into the previous result; it applies Ĉ = vx0
+ jvy0, so that we can write

v̂ = vx + jvy = (vx0 + jvy0) (cosωct− j sinωct) .

The comparison of the real and imaginary parts on the LHS and RHS of the previous relation yields
in

vx = vx0 cosωct + vy0 sinωct,

vy = vy0 cosωct− vx0 sinωct.

If we introduce the magnitude of the component of the initial velocity perpendicular to the magnetic
field as

v⊥0 ≡
√

v2x0 + v2y0,

the previous results can be formally expressed as

vx = v⊥0

(

vx0
v⊥0

cosωct +
vy0
v⊥0

sinωct

)

= v⊥0 (cosωct cos δ + sinωct sin δ) . (1.12a)

vy = v⊥0

(

vy0
v⊥0

cosωct−
vx0
v⊥0

sinωct

)

= v⊥0 (cosωct sin δ − sinωct cos δ) . (1.12b)

where we have introduced

cos δ ≡ vx0
v⊥0

, sin δ ≡ vy0
v⊥0

⇒ tan δ ≡ vy0
vx0

.

Employing the well known formulas for the summation of trigonometric functions, Eqs. (1.12) can
be rewritten as

vx = v⊥0 cos(ωct− δ), vy = −v⊥0 sin(ωct− δ). (1.13)

For the speed of the particle it directly follows from Eqs. (1.9) and (1.13) that

v =
√

v2x + v2y + v2z =
√

v2
⊥0 + v2z0 =

√

v2x0 + v2y0 + v2z0 = v0 = const.,

the particle speed in a uniform magnetic field is constant; however, its direction does change in
time. The integration of Eqs. (1.13) leads to the x- and y-component of the particle position vector

x =

∫

vxdt =
v⊥0

ωc

sin(ωct− δ) + Cx,

y =

∫

vydt =
v⊥0

ωc

cos(ωct− δ) + Cy.

If we introduce a new quantity

Rc ≡
v⊥0

ωc

=
mv⊥0

qB
, (1.14)

after the determination of the constants of integration, the trajectory of the charged particle in a
uniform magnetic field can be expressed as

x = Rc sin(ωct− δ) +Rc sin δ + x0, (1.15a)

y = Rc cos(ωct− δ)−Rc cos δ + y0. (1.15b)

z = vz0t+ z0. (1.15c)
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To sum up, it follows from Eqs. (1.15) that the trajectory of a charged particle in a uniform
magnetic field is a helix with the radius |Rc| (the cyclotron radius), oriented along the magnetic
field direction.

If the charged particle enters the magnetic field in the perpendicular direction and thus it applies
vz0 = 0, it moves further along a circular trajectory with the radius |Rc| and the period Tc = 2π/ωc.

1.3 Experiment

1.3.1 Principle

B

h

U

2Rc

E

Figure 1.1: Schematics of the experimen-
tal set-up.

The specific charge of the electron can be determined
as follows, see Fig. 1.1. Electrons are emitted from the
heated electrode (cathode) of an electron gun, and then
accelerated towards the positive electrode. Assume
that there is a uniform electric field between the planar
electrodes with a mutual distance h, for the magnitude
of whose intensity it applies E = U/h, where U is the
voltage between the electrodes. If the initial velocity of
an emitted electron is small, it will move in the electric
field along a straight line against the direction of the
electric field. For the speed and the distance traveled
on time, see the relations (1.5) and (1.6), it applies

v =
eE

me

t, s =
1

2

eE

me

t2,

where e is the elementary charge, and me is the elec-
tron mass. The electron thus reaches the anode (after
having passed the distance h) at the time

th =

√

2hme

eE
,

and for its speed it holds

v =
eE

me

th =

√

2ehE

me

=

√

2eU

me

.

After the electron passes through the hole in the anode, it moves along a straight line with a
constant speed (the electric field is concentrated between the electrodes only) until it flies perpen-
dicularly into a uniform magnetic field with magnitude B. Here, it moves along a part of a circular
trajectory for whose (cyclotron) radius, see the relation (1.14), it applies

Rc =
mev

eB
=

√

2meU

eB2
.

From here, by the measurement of the (cyclotron) trajectory radius, we can determine the electron
specific charge e/me as

e

me

=
2U

B2R2
c

. (1.16)
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Figure 1.2: Experimental set-up: 1 – power supply for the Helmholtz coils, 2 – voltage adjust-

ment, 3 – current limiter, 4 – ammeter for the measurement of the current through Helmholtz

coils, 5 – pair of coils in the Helmholtz arrangement, 6 – argon-filled narrow-beam tube, 7

– low-voltage power supply for the electron gun, 8 – adjustment of the grid voltage 0–50V, 9

– adjustment of the anode voltage 0–300V, 10 – output 6.3V∼ for the cathode heating, 11 –
voltmeter for the measurement of the accelerating voltage.

1.3.2 Experimental set-up

The experimental set-up for the determination of the specific charge of the electron is shown in
Fig. 1.2. The electron beam is emitted by an electron gun 6 in a tube filled with argon (pressure
about 0.1Pa). When the accelerated electrons collide with argon atoms, they are ionized, and when
the resulting ions recombine into neutral atoms, photons are emitted, so that a narrow electron
beam can be observed in the tube.

V

A

C+

+

–

–
0–250V

0–50V

G

6,3V∼

Figure 1.3: Wiring diagram of
the narrow-beam tube–the elec-
tron gun.

The speed of the electrons can be adjusted via the accelerat-
ing voltage U , which is the sum of the grid voltage (set in the
range 0–50V by the potentiometer 8 ), and the anode voltage

(set in the range 0–250V by the potentiometer 9 ), see Fig. 1.3.
The cathode of the electron gun is heated by the AC voltage
6.3V.

The magnetic field in which the electron beam is allowed to
curve is generated in the axis of a pair of coils in Helmholtz
arrangement (Fig. 1.2, 5 ). These are two identical coaxial coils
through which the same current passes in the same direction. It
can be shown, see the Appendix, that if the mutual distance of
the coils is equal to their radius, the magnetic field vector in the
axis of the coils is approximately constant and its magnitude is

B ≈ B0 =
8

5
√
5

µ0NI

a
, (1.17)
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where µ0 = 4π · 10−7N·A−2 is the magnetic constant, N is the number of turns of each coil
(in this case, N = 154), I is the current through the coils, and a is their radius (in this case,
a = 200mm). The Helmholtz coils work correctly only if current flows through them in the same
direction (otherwise the magnetic field at their center is zero). The current through the Helmholtz
coils is adjusted by a current limiter 3 on the small-voltage power supply 1 , which prevents it
from dropping when the coils heat up. The output voltage should be set to the maximum value
using the potentiometer 2 .

If the accelerated electrons enter the magnetic field perpendicularly, they move along circular
trajectories that can be observed in the tube. If the trajectory is helical, the bulb must be rotated
along its axis so that the trajectories are circular. The radii of the trajectories are not measured
but adjusted. In the tube, at distances l = 4, 6, 8 and 10 cm from the electron gun, luminous traces
are placed; if the electron beam hits a given trace, it lights up and the cyclotron radius (radius of
the circular trajectory) is equal to half the distance l.

1.3.3 Safety during the measurement

The accelerating voltage of the electron gun can be as high as 300V. For this reason, do not
disconnect or tamper with the tube power supply circuit. Ask the instructor to turn the

experiment on and off.

1.3.4 Procedure

1. Before switching on the power supply of the electron gun 7 , the potentiometers 8 and 9
must be set to the minimum (zero) value.

2. Ask the instructor to switch the experiment on.

3. After switching on the power supply 7 you need to let the cathode of the electron gun glow
for about 2 minutes before you start increasing the accelerating voltage. This extends the
lifetime of the electron gun cathode.

4. For various accelerating voltages U (the experiment works well for voltages greater than about
100V), find the currents through the Helmholtz coils (and hence the magnetic field) when
the electrons hit the luminous traces, i.e., when the cyclotron radius of their trajectories can
be determined. Make the measurements at least sixteen times.

5. For each combination of the set and measured values, calculate the specific charge of the
electron using the formula (1.16). From the calculated values, determine the mean value and
the uncertainty of the measurement.

6. When you finish the measurement, set the anode and grid voltage source potentiometers to
minimum – this extends the lifetime of the electron-gun cathode. Ask the instructor to switch
the experiment off.

1.4 References

1. B. Sedlák, I. Štoll: Elektřina a magnetismus, Academia, Praha, 2002.

2. David J. Griffiths, Introduction to Electrodynamics, Prentice Hall, New Yersey, 1999.
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1.5 Appendix

1.5.1 Magnetic field in the axis of a circular loop

We use the Biot-Savart-Laplace law to calculate the magnetic field in the axis of a circular loop.
Let the loop have radius a and current I flows through it.

z

⊙ dl′

I

a
α

dB

dBa

dBr

r− r′

An element of the current-carrying loop dl′ generates on its axis
magnetic field

dB =
µ0I

4π

dl′ × (r− r′)

|r− r′|3 ,

where µ0 = 4π · 10−7N·A−2 is the magnetic constant. Thanks to the
fact that the individual vectors are perpendicular, it holds for the
magnetic field element magnitude

dB =
µ0Idl

′

4π(a2 + z2)
.

Its component in the axis direction is

dBz = dB sinα =
µ0Iadl

′

4π(a2 + z2)3/2
.

As the component dBz is the same for all the loop elements we get for the total magnetic field in
the loop axis

Bz =

∫

◦
L

µ0Iadl
′

4π(a2 + z2)3/2
=

µ0Ia

4π(a2 + z2)3/2

∫

◦
L

dl′ =
µ0Ia

2

2(a2 + z2)3/2
.

As the radial component of the magnetic field vector on the loop axis is zero due to the symmetry,
the magnetic field vector on the axis has the axial direction and for its magnitude it applies B = Bz.

If the loop had N turns, the total current passing through it would be NI, so that employing
the superposition principle (the magnetic field is a linear function of current) results in the total
magnetic field on the axis of this loop

B =
µ0NIa2

2(a2 + z2)3/2
. (1.18)

1.5.2 Coils in Helmholtz arrangement

a

0

z

d/2−d/2

Helmholtz coils consist of two identical coaxial circular loops of ra-
dius a, each with N turns, through which the same current I flows
in the same direction. If these loops are placed at a mutual distance
d = a, the magnetic field in the axis between the loops is approxi-
mately uniform. We will prove this statement in the following text.

We place the center of the z-axis (symmetry axis) at the center
between the coils, see the figure. According to Eq. (1.18), magnetic
field on the axis is given as

B =
µ0NIa2

2

{

1

[a2 + (z − d/2)2]3/2
+

1

[a2 + (z + d/2)2]3/2

}

.
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−a z+a

B/B0

d = 0, 8 a

d = a
d = 1, 2 a

Figure 1.4: Magnetic field in the axis of Helmholtz coils for different distances d.

It is self-evident that the less dependent the field between the loops is on the z-coordinate (the
more uniform it is), the smaller the derivatives of the magnetic field with respect to the z-coordinate
will be. For the first derivative it applies

dB

dz
= −3µ0NIa2

2

{

z − d/2

[a2 + (z − d/2)2]5/2
+

z + d/2

[a2 + (z + d/2)2]5/2

}

,

Obviously, dB/dz = 0 for z = 0 (symmetry). For the second derivative it applies

d2B

dz2
= −3µ0NIa2

2

{

a2 − 4(z − d/2)2

[a2 + (z − d/2)2]7/2
+

a2 − 4(z + d/2)2

[a2 + (z + d/2)2]7/2

}

.

For z = 0 it applies
d2B

dz2

∣

∣

∣

z=0
= 3µ0NIa2

d2 − a2

(a2 + d2/4)7/2
.

The second derivative is therefore zero if the distance between the loops is equal to their radius.
For the magnitude of the magnetic field vector in the axis between the loops it then applies

B ≈ B0 =
8

5
√
5

µ0NI

a
. (1.19)
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