
Laboratory experiment

Measurement of speed of sound

employing sonar

1.1 Task

Determine the speed of sound in air by measuring the time between transmission and registration of
reflected ultrasonic pulses. Compare the measured value of the speed of sound with the calculated
value.

1.2 Linearized equations of acoustic field

At the beginning, we derive the basic relationships with which we describe acoustic field and
show that a wave equation can be derived from them. For simplicity, we will consider only a
one-dimensional case.
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Figure 1.1: Regarding the continuity and momentum equation.

1.2.1 Continuity equation

We derive the one-dimensional continuity equation for a fluid moving along the x axis, see Fig. 1.1a).
Assume a fluid with mass flux density q(x) flowing from the left side into an elementary control

volume dV . The fluid with the flux density q(x+ dx) flows out of the control volume at the right
side. The increase of the mass of dV per unit time is then

dm

dt
= S [q(x)− q(x+ dx)] , (1.1)
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where m is the mass of the elementary volume and S is the cross-sectional area. As the flux density
changes only a little within the elementary distance dx, we can use the first two terms of the Taylor
series to get

q(x+ dx) = q(x) +
∂q(x)

∂x
dx. (1.2)

As the mass flux density q = ρv, where ρ is the mass density, and v is the fluid velocity, and as
the mass of the volume element m = ρSdx, substitution of Eq. (1.2) into Eq. (1.1) results in the
one-dimensional continuity equation

∂ρ

∂t
= −∂(ρv)

∂x
. (1.3)

The total fluid density ρ has two components. There is an ambient fluid density ρ0, to which
there is superimposed so-called acoustic density ρ′, which is related to perturbations propagating
in in fluid. Thus, it holds ρ = ρ0 + ρ′, and ρ′ ≪ ρ0. Considering this fact and assuming that the
ambient fluid density is constant, we can neglect the terms ∂ρ0/∂t and ∂(ρ′v)/∂x, in the continuity
equation and thus we linearize it as

∂ρ′

∂t
= −ρ0

∂v

∂x
. (1.4)

1.2.2 Momentum equation

We derive the one-dimensional equation of motion for a perfect (non-viscous) fluid, see Fig. 1.1b).
There is the fluid pressure p(x) acting on the elementary volume dV from the left side and

pressure p(x + dx) acting from the right side. If we neglect the volume forces (gravity, inertial
force) we can write the momentum equation in form

dm
∂v

∂t
= S [p(x)− p(x+ dx)] , (1.5)

where dm is the mass of the elementary control volume dV .
As the fluid pressure changes only a little within the elementary distance dx, we can use the

first two terms of the Taylor series to get

p(x+ dx) = p(x) +
∂p(x)

∂x
dx. (1.6)

Substituting Eq. (1.6) into Eq. (1.5) and using dm = ρSdx results in the momentum equation
in form

ρ
∂v

∂t
= −∂p

∂x
. (1.7)

The total pressure p has two components. There is the acoustic pressure p′, connected with the
perturbations propagating in the fluid, superimposed on the ambient (barometric) pressure p0, so
that p = p0 + p′. The ambient pressure can be considered constant in space and time. As it also
holds ρ′ ≪ ρ0 (which we have used in the previous paragraph), the momentum equation can be
linearized and written as

ρ0
∂v

∂t
= −∂p′

∂x
. (1.8)

1.2.3 Equation of state

When an acoustic wave propagates in a gas, the gas condenses and dilutes very quickly and it also
conducts the heat quite poorly. For this reason, we can assume that the heat is not exchanged and
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thus the propagation of sound can be considered an adiabatic process, which can be described by
the adiabatic equation of state.

pV γ = p0V
γ
0

=⇒ p

p0
=

(

ρ

ρ0

)γ

, (1.9)

where V is the volume (of an acoustic particle) and γ is the adiabatic exponent. If we, again, only
consider weak perturbations propagating in the fluid, Eq. (1.9) can be linearized. Taylor series of
Eq. (1.9) calculated for ρ0, discarding the higher-order terms, results in

p− p0 =
γp0
ρ0

(ρ− ρ0), (1.10)

which can be rewritten as
p′ = c2

0
ρ′, (1.11)

where

c2
0
=

dp

dρ

∣

∣

∣

∣

ρ=ρ0

=
γp0
ρ0

, (1.12)

as it will be shown in the following text, is the square of the speed of sound.
The above formula can be rewritten employing the equation of state of an ideal gas as follows

pV = nRT → p
m

ρ
= nRT → p =

n

m
ρRT → p =

ρRT

M
,

where R is the molar gas constant, T is the temperature (in kelvins), n is the amount of substance,
and M is the molar mass of the respective gas. Substitution of this formula into Eq. (1.12) results
in

c0 =

√

γR

M
T. (1.13)

From here, it follows that for a given temperature, the speed of sound is greater in gases with a lower
molar mass and that for a given gas the speed of sound is proportional to the square root of the
thermodynamic temperature. For temperature in degrees Celsius θ, employing relation T = T0 + θ
(T0 = 273.15 K) relation (1.13) gets the form

c0 =

√

γRT0

M

(

1 +
θ

T0

)

. (1.14)

For θ ≪ T0 the formula can be linearized employing the first two terms of the Taylor series as

c0 ≈
√

γRT0

M
+

1

2

√

γR

MT0

t (1.15)

and substituting the corresponding values for air (γ = 7/5, R = 8.314 JK−1mol−1, M = 28.96 gmol−1)
we retrieve the well known formula

c0 ≈ 331.06 + 0.61θ [m/s, ◦C]. (1.16)
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1.2.4 Wave equation

In this section we prove that perturbations in fluids propagate as waves. The one-dimensional
linearized equations (1.4), (1.8), (1.11) form a set of partial differential equations describing acoustic
field in an inviscid, homogeneous and quiescent fluid

∂ρ′

∂t
= −ρ0

∂v

∂x
, (1.17a)

ρ0
∂v

∂t
= −∂p′

∂x
, (1.17b)

p′ = c2
0
ρ′. (1.17c)

The set of equations can be rewritten as follows by eliminating the acoustic density and velocity.
We take the time derivative of Eq. (1.17a) and we take the derivative of Eq. (1.17b) with respect
to the spatial coordinate so that we get

∂2ρ′

∂t2
= −ρ0

∂2v

∂x∂t
, (1.18a)

ρ0
∂2v

∂t∂x
= −∂2p′

∂x2
. (1.18b)

From here we eliminate the second order mixed derivatives and we substitute for the acoustic
density from Eq. (1.17c). This way we obtain the wave equation for the acoustic pressure in the
form

∂2p′

∂x2
− 1

c2
0

∂2p′

∂t2
= 0. (1.19)

We can easily verify by direct substitution (taking the corresponding derivatives) that the
solution to the wave equation (1.19) can be written as

p′(x, t) = f(x− c0t) + g(x+ c0t), (1.20)

where the function f represents a wave propagating in the positive x direction with phase velocity
c0, and the function g represents a wave propagating with the same speed in the negative x direction.
The shape of the functions f and g is related to the initial and boundary conditions for a given
problem.

1.3 Measurement of speed of sound

The set-up for the measurement of the speed of sound is very simple, it works on principle of sonar
and it is schematically depicted in Fig. 1.2.

A short ultrasonic pulse is sent from the ultrasound transmitter, it propagates in the air as a
sound wave and after being reflected from the screen it is received by an ultrasonic receiver. We
can calculate the speed of sound c0 from the time between the transmission and registration the
reflected ultrasonic pulse and the distance l it has traveled (see Fig. 1.2). For different distances li
we obtain different propagation times ∆ti. As there is the well known formula for the motion with
constant velocity s = vt + s0, where s, s0 are the distances and v is the velocity, we can calculate
the speed of sound such that, employing the least squares method, we approximate the measured
values ∆ti, li by a straight line (linear polynomial) l = A∆t+B, where we determine the speed of
sound as c0 = A.
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Figure 1.2: Experimental set-up.

1.4 Instructions

1.4.1 Procedure

1. Check the experimental set-up.

2. Measure the time interval between the transmission and registration of ultrasonic pulses for
at least 10 different distances between the reflecting screen and the transmitter-receiver set.

3. Use the least squares method to calculate the speed of sound in the air. Compare this value
with the value calculated for a given temperature using the formula (1.16).

You can use the script An universal tool for plotting graphs - least squares method at website
http:\\planck.fel.cvut.cz/praktikum/ to create a graph, calculate the speed of sound and its
uncertainty.

1.4.2 Experimental set-up

It is not necessary to disconnect cables and individual devices after the measurement, so do not
do so unnecessarily. If some cables are disconnected (or something does not work), the connection
procedure is given below.

Plug the ultrasonic (USC) transmitter into connector TR1 of the USC unit (10, Fig. 1.3) and
employing the button 4, switch the USC unit into the burst regime (Burst). Plug the USC receiver
into the input BNC connector of the USC unit (14, Fig. 1.3). Adjust the output signal amplitude
(potentiometer 6) and/or the input gain of the USC unit (switch 1 and potentiometer 2) so that the
amplifier of the USC unit is not overloaded. The overload is indicated by LED OVL (3, Fig. 1.3).

Connect the synchronization output of the USC unit (BNC connector 11) to input 1 of the
oscilloscope. Connect the analog output of the USC unit (BNC connector 13) with the input 2 of
the oscilloscope.

1.4.3 Digital oscilloscope Agilent DSO-X 2012A: setting and operation

• Switch on the oscilloscope using the button (1, Fig. 1.4) at the left-bottom side of the front
panel.
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Figure 1.3: Ultrasonic (USC) unit. 1 - Rotary switch for input signal amplification selection; 2 -
Potentiometer for the input signal amplification adjustment; 3 - Overload LED indicator (OVER-
LOADED); 4, 5 - Operation mode selection button with LED indicator: cont. indicates the con-
tinuous mode, burst indicates the burst mode; 6 - Potentiometer for the output signal amplitude
adjustment; 7 - USC frequency adjustment; 8 - Switch for the phase reversal of the output USC
signal; 9, 10 - Terminals for the connection of USC transmitters; 11 - Analog power output; 12 -
Output of amplified and rectified signal of the USC receiver; 13 - Output of amplified signal of the
USC receiver; 14 - Input for the connection of USC receiver.

1

2

3

4 5 67

8

Figure 1.4: Digital oscilloscope Agilent DSO-X 2012A.

• Push the button Default setup (2, Fig. 1.4) to reset the previous oscilloscope setting.

• Push the button 2 (3, Fig. 1.4), to activate the second input channel (the button will light
on).

• Rotate the knob Level in section Trigger (4, Fig. 1.4) to set the synchronization input signal
level of the transmitted signal. The displayed signal on the oscilloscope should get stationary.

• Use knob Horizontal in section Horizontal (5, Fig. 1.4) and the knob with the right and left
arrows (6, Fig. 1.4) to adjust the display, so that you can see the transmitted and received
pulse well. Use the rotary knobs in section Vertical to adjust the scale of the displayed pulses.

• Push the button Cursors situated in section Measure (7, Fig. 1.4) to activate cursors (you
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should see a vertical line on the display at the beginning of the synchronization pulse).

• Push the rotary knob Cursors in section Measure (8, Fig. 1.4) to display the menu in which
you can select (by rotating this knob) required cursor (X1, X2), make the selection by pushing
this knob. Adjust the position of the cursors by rotating this knob (to the beginning of the
pulses). After setting the position of both the cursors, read the time separation ∆X between
them on the oscilloscope display.
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