
Laboratory experiment

Stefan-Boltzmann’s law of radiation

1.1 Task

Check the validity of the Stefan-Boltzmann’s law by measuring the temperature dependence of the
power emitted by the filament of a light bulb.

1.2 Theory

1.2.1 Black body

Figure 1.1: Model
of a black body

It is well-known from thermodynamics that there are three ways of transferring
thermal energy from point to point: conduction, convection, and radiation.
The first two mechanisms require a material environment to exist, whereas the
transfer of thermal energy by radiation can take place in vacuum. By thermal
radiation is generally meant all radiation emitted by the surface of a body with
a non-zero absolute temperature. The spectrum of this radiation is continuous.

When thermal radiation strikes the opaque surface of a body, some of it is
reflected back, and some is absorbed. By definition, a black body is a body
whose surface absorbs thermal radiation perfectly and therefore reflects noth-
ing. A rough black surface is close to a black body, but a more perfect prototype
of the black body is more like a cavity with a small hole. Due to the finite

reflectivity of the inner walls, almost every ray that enters the cavity is quickly absorbed. The
hole thus appears black, and is a good approximation of the black body. Although a black body
absorbs all incident radiation, as long as it is at a non-zero (thermodynamic) temperature, it emits
radiation itself.

In 1859, Gustav Robert Kirchhoff investigated the laws of thermal radiation. Using the general
laws of thermodynamics, he showed that the greater the surface absorption of a body, the better
the thermal radiation it emits, so that the best emitter of thermal radiation is paradoxically the
black body. He also showed that the intensity of the radiation of the black body is only a function
of temperature M e = f(T ).

The spectrum of black-body radiation is governed by Planck’s radiation law1, which can be
expressed, for example, in the following form

M e
λ(T, λ)dλ =

2πhc2

λ5(ehc/λkBT − 1)
dλ, (1.1)

1This formula was derived in 1900 by German physicist Max Planck and it laid the foundations of quantum
mechanics.
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Figure 1.2: Spectrum of black-body radiation for different temperatures. The blue rectangle de-
limits the visible part of the spectrum.

where M e
λ(T, λ) is the so-called spectral intensity of radiation, λ is the wavelength, T is the thermo-

dynamic temperature (in kelvins), h is the Planck constant, c is the speed of light in vacuum, and
kB is the Boltzmann constant. The expression M e

λ(T, λ)dλ represents the power radiated by a black
body into all directions trough one meter squared of its surface in the wavelength-band (λ, λ+dλ).
It can be seen from Eq. (1.1) that this radiated power only depends on the temperature T . The
spectral intensity of black-body radiation for individual temperatures is depicted in Fig. 1.2.

The total power radiated by one meter squared of the surface of a black body – the intensity of
radiation – can be calculated by integrating Eq. (1.1) over all wavelengths as

M e =

∫ ∞

0

M e
λ(T, λ)dλ =

∫ ∞

0

2πhc2

λ5(ehc/λkBT − 1)
dλ =

=

∣∣∣∣∣∣
u = hc/λkBT
du = −hcdλ/λ2kBT
0 → ∞, ∞ → 0

∣∣∣∣∣∣ = 2πk4
BT

4

h3c2

∫ ∞

0

udu

eu − 1
, (1.2)

where ∫ ∞

0

udu

eu − 1
=

π4

15

is a known integral, we get

M e =
2π5k4

B

15h3c2
T 4 = σT 4, (1.3)

where

σ =
2π5k4

B

15h3c2
= 5.670 374 . . .× 10−8W ·m−2 ·K−4

is the so-called Stefan-Boltzmann constant2. Formula (1.3) represents the Stefan-Boltzmann’s
law3 and it says that the black-body radiation intensity is proportional to the fourth power of its
thermodynamic temperature. Obviously, the total power P radiated by a black body with the
surface-area S can be calculated as

P = SσT 4. (1.4)

2The value of the Stefan-Boltzmann constant is given by definition, it is not determined by measurement.
3This formula was first found experimentally in 1870 by the Austrian physicist Josef Stefan. Five years later it

was derived by Austrian physicist Ludwig Boltzmann using general thermodynamics and Maxwell’s theory.
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From Fig. 1.2 it can be seen that the spectral-intensity curves have a maximum for the wave-
length λmax, which is a function of the temperature. We find it by the following way.

If we introduce in Eq. (1.1) mew parameters c1 = 2πhc2, c2 = hc/kBT , taking the derivative,
we get

d

dλ

[
c1

λ5(e c2/λ − 1)

]
= −c1

c2

(5λ/c2 − 1)e c2/λ − 5λ/c2
λ7(e c2/λ − 1)2

. (1.5)
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Figure 1.3: Solution of
Eq. (1.6).

A necessary condition for the extreme is zero derivative. If we intro-
duce u = c2/λ, the relation (1.5) will be zero if

5− u = 5e−u. (1.6)

Equation (1.6) is a transcendent equation that must be solved nu-
merically. For example, in Maple, using the fsolve command, we can
easily find that equation (1.6) has the non-zero solution u = u0 =
4.965114232 . . .

The condition for the wavelength λmax at which a black body radiates
with a maximum is obtained by back-setting

u0 =
c2

λmax

=
hc

kBTλmax

⇒ λmax =
hc

u0kBT
=

b

T
, (1.7)

where

b =
hcu0

kB
= 2.897 772 . . .× 10−3m ·K

is the so-called Wien constant4. Formula (1.7) represents the Wien’s displacement law5 and it
says that the wavelength at which a black body radiates the most is inversely proportional to its
thermodynamic temperature.

1.2.2 Real radiators

If the source of radiation is not a black body but a real body, the radiation is emitted according to
the law

M ′e =

∫ ∞

0

ϵ(λ)M e
λ(T, λ)dλ, (1.8)

where 0 ≤ ϵ(λ) ≤ 1 is the so-called spectral emissivity of the surface of the radiator. If its value
is independent on the wavelength. i.e., ϵ(λ) = ϵ = const., we speak about the so-called grey body.
The Stefan-Boltzmann’s law has in this case the form

M ′e = ϵσT 4, (1.9)

and for the total radiated power it holds

P = ϵSσT 4. (1.10)

1.3 Experiment

1.3.1 Experimental set-up

The aim of the experiment is to check the validity of the Stefan-Boltzmann’s law (1.3) – to see
that the power radiated by a black body is proportional to the fourth power of its thermodynamic
temperature.
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Figure 1.4: Experimental set-up: 1 – Supply of adjustable AC/DC voltage, 2 – jig with a 100Ω

ballast resistor, 3 – ammeter, 4 – voltmeter, 5 – light bulb, 6 – shielding tube, 7 – thermopile,

8 – millivoltmeter.

(a) (b)
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A A
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Figure 1.5: Wiring diagram of the experiment.

The experimental set-up is shown in Fig. 1.4. A low-voltage tungsten-filament light bulb is
used as the radiation source, representing here a grey body. The bulb is connected to a DC and
AC power supply, see Fig. 1.5, the current flowing through the bulb and the voltage drop across
the bulb are measured, so that the resistance of its filament can be calculated from Ohm’s law as
R = U/I.

The filament of the bulb is made of tungsten, for which the temperature dependence of the
resistivity is known. For the resistance of the filament of the bulb, there is an empirical relationship
which reads

R(t) = R0(1 + αt+ βt2), (1.11)

where α = 4.82 × 10−3K−1, β = 6.76 × 10−7K−2 are material parameters for tungsten, t is the
temperature in degrees Celsius, and R0 is the resistance of the filament at the temperature of 0◦C.
This resistance can be determined from Eq. (1.11) as follows. For known lab temperature tlab the
resistance of the filament R(tlab) is measured employing a small current (up to 100mA), which does
not cause heating of the filament. The resistance R0 is then calculated as

R0 =
R(tlab)

1 + αtlab + βt2lab
. (1.12)

When a larger current is passed through the filament, the filament of the bulb gets hotter, and
depending on the temperature, its resistance changes to R(t). Knowing the values of R0, α, β, the

4The value of the Wien constant is given by definition, it is not determined by measurement.
5This law was theoretically derived in 1893 by German physicist Wilhelm Wien.
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filament temperature can be calculated as the positive root of the quadratic equation (1.11), for
which it holds

T = 273.15 +
α

2β

[√
1 +

4β

α2

(
R(t)

R0

− 1

)
− 1

]
, (1.13)

where T is the thermodynamic temperature (in kelvins).
In the experiment, a non-contact temperature sensor called the thermopile is directed against

the filament of the bulb.6 Voltage ut between its output terminals is proportional to the power of
the electromagnetic radiation impinging upon its surface. As its power is proportional to the total
power radiated by the filament (1.10), it holds

ut ∼ T 4. (1.14)

The voltage ut between the output terminals of the thermopile is measured employing a millivolt-
meter.

1.3.2 Data processing and evaluation

By repeated measurements, for different voltages on the bulb, a set of pairs of values

[Ti, uti], i = 1, 2, . . . , N,

is obtained, which should follow the functional dependence (1.14). The measured data can be
approximated employing the least squares method7 by function

ut = AT a, (1.15)

where A is a constant dependent on the parameters of the experimental set-up, and the exponent a
should have the value close to number 4. As the least squares method together with the relationship
(1.15) leads to a set of nonlinear equations (which are hard to solve), the procedure is as follows.
Equation (1.15) is logarithmed, resulting in

log(ut) = log (AT a) = a log(T ) + log(A) = a log(T ) + b, (1.16)

where b = log(A), which is an equation for a line for logarithms of temperature and voltage. Value
of the exponent a can be thus determined such that the pairs of logarithms of the measured data
[log(Ti), log(uti)] are approximated with a line (1.16), where the exponent a is its slope.

1.3.3 Procedure

1. Check that the filament of the bulb is positioned on the measuring bench on the axis of the
thermopile and the shielding tube. If this is not the case, adjust the height of the bulb or the
height and orientation of the thermopile accordingly.

2. Read the temperature tlab displayed by thermometer.

3. Connect the bulb to the DC power supply terminals as shown in Fig. 1.5 (a). The 100Ω
ballast resistor allows for fine adjustment of small current through the bulb.

6It consists of a matrix of thermocouples connected in series.
7For this purpose, you can use an implementation of this method– An universal tool for plotting graphs - least

squares method available at http://planck.fel.cvut.cz/praktikum/.
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4. Switch the multimeter to the DC range 200mV to measure the voltage on the thermopile.
Switch the multimeters in the bulb circuit to DC ranges. Connect the ammeter to the mA
terminal.

5. Measure the voltage drop across the bulb for currents ca. 25, 50, 75, and 100mA, calculate
the resistance of the filament R(tlab) to see that for such small currents the filament resistance
does not depend on the value of the current 8.

6. Remove (short-circuit) the 100Ω ballast resistor, connect the circuit with the bulb to the AC
voltage terminals of the power supply, see Fig. 1.5(b). Switch the multimeters connected to
the bulb circuit to AC ranges, connect the ammeter to the 10A terminal, measure the current
using the 10A∼ range.

7. Using the adjustable power supply, gradually set the voltage drop across the bulb to 1V,
1.5V,2V, . . . , 5.5V, 6V. After setting the voltage, wait for at least 5minutes, until the
thermopile output voltage stops increasing its value. Read the voltage drop across the bulb,
the current flowing through it, and the voltage on the thermopile. The voltage drop across
the bulb should not exceed 6V.

8. For the individual voltages on the bulb, calculate the resistance of the filament and its tem-
perature (see the text above).

9. Employing the least squares method (see the text above), calculate the value of the exponent
in the Stefan-Boltzmann’s law and its uncertainty, and compare the measured value with the
theoretical value.

10. Plot the graph of log(ut) as a function of log(T ), showing the measured data and the approx-
imating line (obtained by the least squares method).

11. Finally, in addition to the result of the measurement, answer the following questions. Is the
bulb a linear circuit element? What was the maximum temperature reached by the filament
of the bulb during your measurement? What wavelength of maximum emission corresponds
to this temperature? Bonus question: Could you calculate what percentage of the energy
the bulb emits, at the highest temperature you reached, in the visible part of the spectrum
(400 nm – 800 nm)?
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8If higher current was flowing through the bulb before, you need to wait for a while until the bulb filament gets
cooled down.
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