
Laboratory experiment

Measurement of coefficient of linear

thermal expansion

1.1 Task

1. Determine coefficient of linear thermal expansion for at least two materials.

2. For the measured samples, plot the graph of their change in length as a function of the
temperature change.

1.2 Theory

r0

T = 0K

T1

T2

T3

T4

T5

T6

b
in
d
in
g
en
er
gy

mean inter-atomic
spacing

Figure 1.1: Binding energy of inter-
atomic forces.

All substances, whether solids, liquids or gases, change their
dimensions as the temperature changes, and in most cases
these dimensions increase with increasing temperature1.
Within this text, we will focus on solids.

1.2.1 The nature of thermal expansion

in solids

The solids hold together due to the binding forces for which
the electrostatic interaction of negatively charged electrons
with the positively charged ions of the crystal lattice are
responsible. These forces can be both attractive and re-
pulsive, their balance means stability, thus determining the
equilibrium distance between the individual atoms. The de-
pendence of the potential energy U of the binding forces as
a function of inter-atomic distance r is shown in Fig. 1.1.

The relation between the force F and the potential en-
ergy can be written as

F = −
∂U

∂r
r0.

It is clear from here that the equilibrium position is located at the minimum of potential energy. If
there is any deviation from the equilibrium position, the potential energy will always increase and

1An exception is, for example, the most widespread liquid on Earth–water, whose volume in the temperature
interval 0 ◦C – 4 ◦C decreases with increasing temperature (water anomaly).
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Substance α [10−6 ◦C−1] Substance α [10−6 ◦C−1]

fused quartz 0.5 concrete 12
Invar2 1.6 copper 17
glass (ordinary) 8.5 brass 19
steel 11 aluminum 23

Table 1.1: Mean coefficient of linear thermal expansion of some substances in temperature range 0
– 100 ◦C.

the binding force will act against the deviation, in the direction of the equilibrium position.
The atoms in the crystal lattice are not at rest, they perform thermal oscillations, where the

energy of these oscillations increases with temperature. As the potential energy function is not
symmetric around the equilibrium distance, see Fig. 1.1, with increasing temperature, the maximum
distance to which the atoms in the field of binding forces can deviate increases more quickly than the
minimum distance, to which they can approach each other. This leads to an increase in the mean
distance between the atoms in the crystal lattice with increasing temperature and thus to thermal
expansion. If the potential energy function were symmetrical with respect to the equilibrium
distance, thermal expansion would not occur.

1.2.2 Linear thermal expansion

Due to the phenomena described above, solids change their dimensions due to a change in temper-
ature. The relative change in the linear dimensions of a body (for example, the length of a rod)
can be expressed using the so-called coefficient of linear thermal expansion (CLTE) α′, which can
be defined as

α′ =
1

l0

dl

dt
, (1.1)

where l = l(t) is the length at the given temperature t and l0 is the length at some chosen tem-
perature, e.g., 0 ◦C. The unit3of CLTE is ◦C−1 = K−1. Experiments show that the coefficient α′,
which is a material parameter, does not change very much with temperature, so it is possible (at
least in a not very large temperature range) to consider it a constant. Integration of Eq. (1.1) then
results in

dl = l0α
′ dt ⇒

∫

l

l0

dx = α′l0

∫

t

0

dτ ⇒ l − l0 = α′l0t ⇒ l = l0 (1 + α′t) . (1.2)

As we set the lower integration limit in degrees Celsius (0 ◦C), we have to substitute in Eq. (1.2)
for the temperature t in degrees Celsius as well. For higher temperature ranges the linear formula
(1.2) needs not be accurate enough. However, it can be modified by adding a quadratic (or a cubic,
...) term into a form

l = l0
(

1 + α′

1
t+ α′

2
t2
)

. (1.3)

For example, for copper it holds α′

1
= 1.48 · 10−5 ◦C−1, α′

2
= 1.85 · 10−8 ◦C−2. If we substituted,

e.g., t = 100 ◦C into the second and third term of Eq. (1.3) for copper, we would find out that

α′

2
t

α′

1

= 0.125,

2Invar is nickel-steel alloy (64% Fe, 36% Ni) with a very small thermal expansion.
3This equality follows from the fact that in the denominator of Eq. (1.1) there is a temperature difference. The

Celsius and thermodynamic temperature scales are only shifted relative to each other, the magnitude of one degree
Celsius and one Kelvin are the same.
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so by neglecting the quadratic term would result in an error of 12.5%. Therefore, if we want to use
a linear formula in a larger temperature range, it is possible to use an average value of CLTE α in
this temperature range and to write

l2 = l1 [1 + α(t2 − t1)] or in a short ∆l = αl∆t. (1.4)

Examples of CLTEs for some substances are given in Tab. 1.1.

1.2.3 Volumetric thermal expansion

Of course, if linear dimensions of solids change with temperature, their volume changes as well. If
a body is made of a homogeneous and isotropic material, the calculation of the volumetric thermal
expansion is very easy.

Let’s assume that at temperature t1, a prism has volume of V1 = a1b1c1. For its volume at
temperature t2, employing Eq. (1.4), we can write

V2 = a2b2c2 = a1b1c1(1 + α∆t)3 = V1

[

1 + 3α∆t+ 3(α∆t)2 + (α∆t)3
]

≈

≈ V1 (1 + 3α∆t) = V1 (1 + β∆t) ⇒ ∆V = βV∆t, (1.5)

where β = 3α is so-called coefficient of volumetric thermal expansion (CVTE). Within the deriva-
tion of Eq. (1.5), quadratic and cubic terms were discarded, which is possible provided that
α∆t ≪ 1, which is fulfilled if the temperature difference ∆t is not too large.
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Figure 1.2: Experimental set-up.

Experience has shown that uniform heating does not cause
mechanical stresses in a homogeneous body. It follows from
here that all the layers of the body expand independently of
each other and therefore the same way. Thus, if there were a
cavity in the body, it would expand as if it were filled with the
material that forms its walls.

1.3 Experimental set-up

Measurements, on the basis of which it is possible to determine
the CLTE, are carried out using a dilatometer, see Fig. 1.2.
It consists of a heater 2 equipped with a thermostat, a ther-

mometer, a water tank 1 serving as a heat reservoir, a clamping

bench for fixing the measured samples 4 , a clock gauge 3 for the measurement of the samples’

lengthening, and supply hoses. The measured samples 5 have the shape of hollow rods, through
which hot water flows, which heats them from the inside to the required temperature.

1.4 Procedure

The measurement procedure is the same for all samples. Conduct the measurement for at least two
different materials.

1. Fix the measured sample (rod) in the clamping bench at the maximum possible distance of
600mm. Attach the supply hoses to the ends of the rod and make sure that they hold tightly
enough. Pour the coldest possible tap water approx. 2 cm below the edge into the water tank.
Carefully attach the clock gauge to the end of the clamping bench and make sure that its
measuring tip rests on the sample to be measured.
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2. Set the thermostat to the lowest possible temperature and switch it on using the switch on
the front panel. Water starts to flow through the measured sample. Wait a while until the
temperature equalizes and note the initial temperature t0 and the value l0, shown by the
clock gauge. You can rotate the clock gauge sleeve with attached scale to set the value l0 to
zero. From this point on, do not touch the measured sample or the clock gauge to avoid their
undesired displacement.

3. Set the thermostat to a temperature approx. 5 ◦C higher than that shown by the thermometer.

If the water is heating up, then the orange LED on the thermostat is bright. If the water
temperature approaches the pre-set one, then the heating slows down, which is indicated by
the dimming of the LED. If the heating of the water has ended, the LED turns off. Read the
water (and sample) temperature ti on the thermometer and the lengthening li shown by the
clock gauge.

4. Repeat the previous step up to the temperature of ca. 60 ◦C.

5. Turn off the heater and pump and drain the water from the tank into the bucket. Carefully
remove the gauge clock from the clamping bench and place it in the box. Remove the supply
hoses from the measured sample in such a way that no remaining water flows onto

the table – lift the clamping bench with the sample so that this water flows into the tank.
Remove the measured sample from the clamping bench. Pour the water from the bucket into
the sink.

6. If you are continuing the measurement, select another sample and continue with point 1,
when you are done, wipe the work table.

1.5 Processing the measured data

For each measured sample, calculate the CLTE and its uncertainty.
You can do this by approximating the measured values (∆ti = ti− t0,∆li = li− l0) by a straight

line (1st degree polynomial) employing the least squares method. Then, you calculate the CLTE as

α =
A

L
,

where A is the straight line slope, and L = (600 ± 1)mm is the measured sample length. Plot all
the measured values (∆ti,∆li) together with the corresponding straight lines in one graph. For
the calculations as well as plotting the graphs, you can use the tool An universal tool for plotting
graphs–least squares method at server https://planck.fel.cvut.cz/praktikum/.
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