
Laboratory experiment

Measurement of viscosity of liquids by

the Stokes method

1.1 Task

Determine dynamic viscosity of glycerine and castor oil employing the Stokes viscosimeter.

1.2 Viscosity

A common property of liquids that distinguishes them from solids is their fluidity. They can flow
from place to place, we can deform, divide, pour and strain them as we wish. They have no shape
of their own, they adapt to the shape of the container, in which they also create a surface.

However, not all liquids are equally liquid, water or beer is certainly more liquid than oil,
honey or Bailey’s. The fluidity of a liquid is determined by its viscosity. The cause of viscosity
is the tangential forces of internal friction, which causes the exchange of momentum between the
molecules of adjacent layers of liquid, which move at different speeds.

∆y

∆v F

If there is a viscous fluid between two parallel plates and
the plates move with different velocities, a force must be ap-
plied to maintain a constant velocity. From the observations
it can be concluded that the liquid acts against the mutual
motion of the plates by the frictional force for the magnitude
of which it applies

F = ηS
∆v

∆y
, (1.1)

where ∆v is the mutual velocity of the plates, ∆y is their separation distance, amd S is the area.
The proportionality coefficient η is called the coefficient of dynamic viscosity of a given liquid. Its
unit is the pascal-second (Pa s). The Newton’s formula (1.1) only holds for small mutual velocities1.
The frictional force also acts between the individual layers of fluid if they move with different

velocities relative to each other. In many cases, the velocity distribution in the flowing fluid is more
complicated than in the previous case. In these cases, it is advantageous to use the formula (1.1)
in a more general (differential) form

τ = η
dv

dy
, (1.2)

1More precisely, for Newtonian fluids, Eq. (1.1) holds if ρ∆v∆y/η < 1500, where ρ is the liquid density. When
this condition is met, the velocity gradient is constant.
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where τ = F/S is the shear stress. The liquids for which the tangential stress is proportional to the
velocity gradient and the relation (1.2) applies to them, are called the Newtonian liquids. These
include, for example, water, mineral oils, alcohol, etc. Even real gases have a low viscosity, which
is the cause of aerodynamic drag. The viscosity of fluids is strongly temperature-dependent. While
it decreases with temperature for liquids, it increases with temperature for gases.

In the case of so-called non-Newtonian fluids, the dependence of the tangential stress and the
velocity gradient is not linear, as described by the formula (1.2). These include, for example,
varnishes, sludge, crude oil, lime, chocolate, and others.

Liquid η [mPa s] Gas η [µPa s]

Glycerine 1480 Neon 32.1
Castor oil 989 Oxygen 20.8
Olive oil 80.8 Helium 20.0
Sulfuric acic 25.4 Air 18.6
Mercury 1.554 Hydrogen 9.0
Water 1.002 Propane 8.3

Table 1.1: Dynamic viscosity of some liquids and gases for T = 20 ◦C and normal atmospheric
pressure.

1.3 Drag

Viscosity is always the cause of fluid resistance to moving objects–the drag. The so-called d’Alembert’s
paradox can be proved, according to which an ideal fluid with zero viscosity does not put any drag
to bodies flown around. When a body moves in a viscous fluid, it is subjected to a resistive force,
the direction of which is opposite to the direction of the motion of the body. During slow motion,
we assume that the viscous fluid adheres to the walls of the body, the shear stress at these walls
is not zero and therefore the fluid acts on the body with a non-zero drag. Another source of drag
acting on the body is the unevenly distributed pressure in front of and behind the body (this un-
evenness is also caused by the viscosity), the spatial variation of which is related to the nature of
the flow around the body.

The drag that the environment puts at a moving (flown around) body has a relatively complex
functional dependence of the body shape, speed and viscosity, and in most cases it is determined
experimentally. An important parameter here is the dimensionless Reynolds number, defined as

Re =
vl

ν
,

where v is the mutual velocity of the body and liquid2, l is a characteristic dimension of the object
(for example, a diameter for a sphere) and ν = η/ρ is the kinematic viscosity, where ρ is the liquid
density.

If Re < 1 applies to the Reynolds number, the influence of viscous shear forces prevails in the
drag. For a sphere, in this case, Stokes’ law can be derived for the magnitude of the drag, which
reads

F = 6πηrv, (1.3)

2The mutual velocity is measured relative to a place, where the velocity of the liquid is not disturbed by the
presence of the moving object.
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where r is the sphere radius. The Stokes’ law thus describes the fact that the magnitude of the
drag for a small Reynolds number is proportional to the magnitude of the velocity of the body.

In general, Newton’s formula is used to describe the drag for different body shapes and different
velocities, which reads

F =
1

2
CρSv2, (1.4)
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where C = C(Re) is the drag coefficient and S is the cross-
sectional area (with respect to the mutual velocity) of the
body. The drag coefficient depends on the shape of the
body and, in general, on the Reynolds number, and this
functional dependence is determined experimentally. For
example, for a sphere and the Reynolds number in the
interval 103 < Re < 105 it holds C ≈ 0.5. Comparing
the formulas (1.3) and (1.4) we can write for a sphere and
Re < 1 that

C =
12η

ρrv
=

24

Re
.

1.4 Free fall in a viscous liquid

Determination of the viscosity of a liquid using the Stokes
viscometer is based on the study of the free fall of a ball in the investigated liquid. There are three
forces acting on the ball: gravity Fg, buoyancy Fb and drag Fd. For the gravity, it reads

Fg = mg,

where m is the mass of the ball and g is the gravitational acceleration. According to Archimedes’
law, the magnitude of the buoyancy is equal to the weight of the liquid, which would occupy the
volume of the immersed body, so it reads

Fb = −mliquid g = −
4

3
πr3ρg,

where r is the ball radius. If the viscosity of the liquid is large and at the same time the radius of
the ball is small, the drag for Re < 1 will follow the Stokes’ law and we can write

Fd = −6πηrv,

where v is the ball velocity.

v

Fg

Fd

Fb

he equation of motion for the ball can therefore be written in the form

m
dv

dt
= Fg + Fb + Fd =

(

m−
4

3
πr3ρ

)

g− 6πηrv. (1.5)

The vector equation (1.5) can be further simplified. If the initial ball velocity
is zero, v(t = 0) = v0 = 0, it will move in a straight line in the direction of the
gravitational acceleration vector3. If we choose the direction of the gravitational
acceleration vector as positive, we can reduce the equation (1.5) for the velocity
vector component in the respective direction to

m
dv

dt
=

(

m−
4

3
πr3ρ

)

g − 6πηrv. (1.6)

3That is, if its average density is greater than the density of the fluid.
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If we introduce auxiliary quantities α = g(1 − ρ/ρb), where ρb is the ball average density and
β = 9η/(2r2ρb), Eq. (1.6) can be rewritten as

dv

dt
= α− βv ⇒

dv

α− βv
= dt ⇒

∫ v

0

dx

α− βx
=

∫ t

0

dy

and the evaluation of the integrals results in

t =

[

−
1

β
ln |α− βx|

]v

0

=
1

β
ln

∣

∣

∣

∣

α

α− βv

∣

∣

∣

∣

⇒ v =
α

β

(

1− e−βt
)

= v∞
(

1− e−βt
)

. (1.7)

From the last formula it follows that the velocity of the ball increases exponentially from zero to
the value

v∞ =
2gr2(ρb − ρ)

9η
. (1.8)

The time of reaching of p-th multiple4 of the velocity v∞ can be calculated from Eq. (1.7),
namely,

p = 1− e−βtp ⇒ tp = −
ln(1− p)

β
= − ln(1− p)

2r2ρb
9η

. (1.9)

During this time, the sphere travels the distance5

∆lp =

∫ tp

0

v∞
(

1− e−βt
)

= v∞

[

t +
1

β
e−βt

]tp

0

= v∞

[

tp +
1

β

(

e−βtp − 1
)

]

=

= −
v∞
β

[ln(1− p) + p] = − [ln(1− p) + p]
4gr4ρb(ρb − ρ)

81η2
. (1.10)

For example, for p = 0, 99 we get

t99 ≈
ρbr

2

η
, ∆l99 = 0, 18

gr4ρb(ρb − ρ)

η2
. (1.11)

1.5 Stokes viscosimeter

∆L

The Stokes viscometer is a tall transparent vessel filled with the examined liquid in
which the time of free fall ∆T of a suitably selected ball between two marks at a
distance ∆L is measured. The viscosity is calculated using Eq. (1.8) rewritten in the
form

η =
2

9
gr2(ρb − ρ)

∆T

∆L
(1.12)

if the following conditions are met.

• The marks are placed at such a distance that the motion of the ball between
them can be considered uniform.

• The radius of the test vessel is significantly larger than the radius of the ball,
it should not move near the wall.

• It holds Re < 1. Otherwise, a ball with a lower density and radius should be
chosen.

4p ∈ 〈0, 1)
5You can see for yourself that it holds ln(1 − p) + p < 0 for p ∈ 〈0, 1).
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The table below shows the values calculated for different liquids at temperature
20◦C and an iron ball with radius 1mm (ρb = 7860 kgm−3).

Liquid η ρ v∞ t99 ∆l99 Re
[mPa s] [kgm−3] [cm s−1] [ms] [mm] [-]

Glycerine 1480 1261 0.97 5.4 0.041 0.017
Castor oil 989 960 1.53 8.2 0.099 0.030
Transformer oil 866 31.6 48.2 254 96.4 26.4

It can be seen from the table that to measure the viscosity of the transformer oil, it would be
necessary to proceed differently, because using Stokes’ law, it yields Re > 1, but, for these values
the Stokes’ law does not hold true any more.

1.6 Procedure

The measurement procedure is the same for both glycerine and castor oil.

1. Count 12 balls in a Petri dish and measure their radius.

2. Determine the weight of the balls on the analytical balance by first weighing the Petri dish
with the balls and then the same Petri dish without the balls.

3. On the test vessel with the examined liquid, set and measure the distance of the rubber rings,
between which you will measure the time of fall of the balls. Place the upper ring at least
5 cm below the liquid surface.

4. Use a double plummet to check and, if necessary, adjust the vertical direction of the test
vessel.

5. Use a stopwatch to measure the time the balls fall between the rubber rings. Discard the
smallest and largest measured value.

6. Use a densitometer to read the density of the liquid.

7. Due to the strong temperature dependence of the viscosity, use a thermometer to read the
temperature and state it together with the result of your measurement.
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